Grapevine leafroll disease in New Zealand is predominantly caused by the ampelovirus GLRaV3 which is vectored between vines by up to three species of mealybugs (Pseudococcus spp) However global understanding of the transmission and spread of GLRaV3 remains limited and does not definitively show how to successfully manage the disease in New Zealand The disease is a manifestation of a complex relationship between the virus vine and vectors each component of which is interdependent on the other two The review suggests that a full understanding of the disease will require research and operational input from plant virologists entomologists vine physiologists pest controllers vineyard managers grapevine breeders/improvers and winemakers Such a wide range of expertise should ensure that the factors behind the spread of the disease over time (its epidemiology) are accurately determined and that effective management solutions are delivered over the course of decades
Volcanic islands with well-characterized geological histories can provide ideal templates for generating and testing phylogeographic predictions. Many studies have sought to utilize these to investigate patterns of colonization and speciation within groups of closely related species across a number of islands. Here we focus attention within a single volcanic island with a well-characterized geological history to develop and test phylogeographic predictions. We develop phylogeographic predictions within the island of La Palma of the Canary Islands and test these using 69 haplotypes from 570 base pairs of mitochondrial DNA cytochrome oxidase II sequence data for 138 individuals of Brachyderes rugatus rugatus, a local endemic subspecies of curculionid beetle occurring throughout the island in the forests of Pinus canariensis. Although geological data do provide some explanatory power for the phylogeographic patterns found, our network-based analyses reveal a more complicated phylogeographic history than initial predictions generated from data on the geological history of the island. Reciprocal illumination of geological and phylogeographic history is also demonstrated with previous geological speculation gaining phylogeographic corroboration from our analyses.
Microscopic localization of endosymbiotic bacteria in three species of mealybug (Pseudococcus longispinus, the long-tailed mealybug; Pseudococcus calceolariae, the citrophilus mealybug; and Pseudococcus viburni, the obscure mealybug) showed these organisms were confined to bacteriocyte cells within a bacteriome centrally located within the hemocoel. Two species of bacteria were present, with the secondary endosymbiont, in all cases, living within the primary endosymbiont. DNA from the dissected bacteriomes of all three species of mealybug was extracted for analysis. Sequence data from selected 16S rRNA genes confirmed identification of the primary endosymbiont as "Candidatus Tremblaya princeps," a betaproteobacterium, and the secondary endosymbionts as gammaproteobacteria closely related to Sodalis glossinidius. A single 16S rRNA sequence of the primary endosymbiont was found in all individuals of each mealybug species. In contrast, the presence of multiple divergent strains of secondary endosymbionts in each individual mealybug suggests different evolutionary and transmission histories of the two endosymbionts. Mealybugs are known vectors of the plant pathogen Grapevine leafroll-associated virus 3. To examine the possible role of either endosymbiont in virus transmission, an extension of the model for interaction of proteins with bacterial chaperonins, i.e., GroEL protein homologs, based on mobile-loop amino acid sequences of their GroES homologs, was developed and used for analyses of viral coat protein interactions. The data from this model are consistent with a role for the primary endosymbiont in mealybug transmission of Grapevine leafroll-associated virus 3.
1. Dung beetles (Scarabaeidae: Scarabaeinae) are integral parts of many ecosystems because of their role in decomposition of dung; particularly mammal dung, which forms the diet of both larvae and adults.
2. New Zealand dung beetles are unusual as they are flightless and evolved on islands with a highly depauperate mammal fauna and thus without the usual dung resource used by dung beetles elsewhere. The diet of New Zealand dung beetles is unknown.
3. We hypothesised (1) that the endemic dung beetle Saphobius edwardsi would be attracted to a broad range of food types, and (2) that S. edwardsi would be able to survive and reproduce on a range of dung types and puriri (Vitex lucens) humus.
4. Laboratory choice tests identified that S. edwardsi was attracted to a range of mammal, bird, invertebrate, and reptile dung types, but not to non‐dung food sources. Five‐month no‐choice tests found that beetle survival rates were lower for beetles fed with humus compared with those fed on mammal, bird, or invertebrate dung. None of the beetles reproduced.
5. This study suggests S. edwardsi have a strong preference for dung, and are likely to be broad dung generalists in their feeding behaviour.
pPrY2001 differed from all known plasmids due to its novel backbone and repB. pKp11-42 was similar to IncFIIk plasmids and contained a number of genes that aid in plasmid persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.