Individual differences in the energy cost of self-maintenance (resting metabolic rate, RMR) are substantial and the focus of an emerging research area. These differences may influence fitness because selfmaintenance is considered as a life-history component along with growth and reproduction. In this review, we ask why do some individuals have two to three times the 'maintenance costs' of conspecifics, and what are the fitness consequences? Using evidence from a range of species, we demonstrate that diverse factors, such as genotypes, maternal effects, early developmental conditions and personality differences contribute to variation in individual RMR. We review evidence that RMR is linked with fitness, showing correlations with traits such as growth and survival. However, these relationships are modulated by environmental conditions (e.g. food supply), suggesting that the fitness consequences of a given RMR may be context-dependent. Then, using empirical examples, we discuss broad-scale reasons why variation in RMR might persist in natural populations, including the role of both spatial and temporal variation in selection pressures and trans-generational effects. To conclude, we discuss experimental approaches that will enable more rigorous examination of the causes and consequences of individual variation in this key physiological trait.Keywords: standard metabolic rate; resting metabolic rate; basal metabolic rate; maternal effects; metabolism; energetics INTRODUCTIONThe energy cost of self-maintenance (when measured as minimal rates of energy metabolism) varies remarkably within species. It effectively forms a central component of life-history theory which concerns how individuals must allocate a finite-energy budget among the competing interests of growth, reproduction and self-maintenance [1]. Compulsory trade-offs among these functions mean that variation in the rate of using energy will probably have implications for life-history traits and hence fitness. Consequently, there is great contemporary interest in amongindividual variation in minimal rates of energy metabolism. In this review, we address two issues: (i) why do some individuals consistently have two or three times the maintenance costs of conspecifics of the same size, age and sex; and (ii) what are the consequences for fitness? For our purposes, the 'baseline' measures of energy metabolism-basal, standard and resting metabolic rate (BMR, SMR and RMR, respectively) are most relevant. When measured on quiescent individuals, at a common temperature and corrected for body mass, these estimate the compulsory energy cost of self-maintenance that is central to life-history theory. The definitions of each vary slightly. SMR is the lowest rate of metabolism, measured at a
Metabolic energy fuels all biological processes, and therefore theories that explain the scaling of metabolic rate with body mass potentially have great predictive power in ecology. A new model, that could improve this predictive power, postulates that the metabolic scaling exponent (b) varies between 2/3 and 1, and is inversely related to the elevation of the intraspecific scaling relationship (metabolic level, L), which in turn varies systematically among species in response to various ecological factors. We test these predictions by examining the effects of lifestyle, swimming mode and temperature on intraspecific scaling of resting metabolic rate among 89 species of teleost fish. As predicted, b decreased as L increased with temperature, and with shifts in lifestyle from bathyal and benthic to benthopelagic to pelagic. This effect of lifestyle on b may be related to varying amounts of energetically expensive tissues associated with different capacities for swimming during predator-prey interactions.
Size-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed. Using an experimental approach, we found that five generations of size-selective harvesting altered the life histories and behavior, but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to high positively size selective fishing pressure invested more in reproduction, reached a smaller adult body size, and were less explorative and bold. Phenotypic changes seemed subtle but were accompanied by genetic changes in functional loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced phenotypic and evolutionary change when harvesting is intensive and size selective. According to a life-history model, the observed life-history changes elevated population growth rate in harvested conditions, but slowed population recovery under a simulated moratorium. Hence, the evolutionary legacy of size-selective harvesting includes populations that are productive under exploited conditions, but selectively disadvantaged to cope with natural selection pressures that often favor large body size.
There is increasing interest in documenting and explaining the existence of marked intraspecific variation in metabolic rate in animals, with fishes providing some of the best‐studied examples. After accounting for variation due to other factors, there can typically be a two to three‐fold variation among individual fishes for both standard and maximum metabolic rate (SMR and MMR). This variation is reasonably consistent over time (provided that conditions remain stable), and its underlying causes may be influenced by both genes and developmental conditions. In this paper, current knowledge of the extent and causes of individual variation in SMR, MMR and aerobic scope (AS), collectively its metabolic phenotype, is reviewed and potential links among metabolism, behaviour and performance are described. Intraspecific variation in metabolism has been found to be related to other traits: fishes with a relatively high SMR tend to be more dominant and grow faster in high food environments, but may lose their advantage and are more prone to risk‐taking when conditions deteriorate. In contrast to the wide body of research examining links between SMR and behavioural traits, very little work has been directed towards understanding the ecological consequences of individual variation in MMR and AS. Although AS can differ among populations of the same species in response to performance demands, virtually nothing is known about the effects of AS on individual behaviours such as those associated with foraging or predator avoidance. Further, while factors such as food availability, temperature, hypoxia and the fish's social environment are known to alter resting and MMRs in fishes, there is a paucity of studies examining how these effects vary among individuals, and how this variation relates to behaviour. Given the observed links between metabolism and measures of performance, understanding the metabolic responses of individuals to changing environments will be a key area for future research because the environment will have a strong influence on which animals survive predation, become dominant and ultimately have the highest reproductive success. Although current evidence suggests that variation in SMR may be maintained within populations via context‐dependent fitness benefits, it is suggested that a more integrative approach is now required to fully understand how the environment can modulate individual performance via effects on metabolic phenotypes encompassing SMR, MMR and AS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.