Gastrointestinal dysfunction is a prominent non-motor feature of Parkinson’s disease (PD) that contributes directly to the morbidity of patients, complicates management of motor symptoms, and may herald incipient PD in patients without motor disability. Although PD has traditionally been considered a disease of dopaminergic neurons in the substantia nigra, analyses of gastrointestinal samples from PD patients have consistently revealed pathology in the enteric nervous system (ENS). The relationship of PD pathology to GI dysmotility is poorly understood, and this lack of understanding has led to limited success in developing treatments for PD-related GI symptoms. We have quantitatively compared myenteric neuron density and relative abundance of NO, VIP, and catecholamine neurons between patients with PD and control individuals along the length of the GI tract. In addition, we have examined the frequency of GI α-synuclein neuritic pathology and its co-localization with the same neuronal markers. We have included a comparison with a small population of patients with incidental Lewy bodies (ILB) found at autopsy. These data indicate there is no neuronal loss in the myenteric plexus in PD. Lewy body pathology parallels parasympathetic autonomic input from the DMV, not the distribution of extrinsic sympathetic input or intrinsic enteric neurons, and is only rarely co-localized with tyrosine hydroxylase. These data provide a critical background to which further analyses of the effect of PD on the GI tract may be compared and suggest that neuropathology in myenteric neurons is unlikely to be a causative factor in PD-related GI dysmotility.
Background
Free radical scavengers have failed to improve patient outcomes promoting the concept that clinically important oxidative stress (OS) may be mediated by alternative mechanisms. We sought to examine the association of emerging aminothiol markers of non-free radical mediated oxidative stress with clinical outcomes.
Methods and Results
Plasma levels of reduced (cysteine and glutathione) and oxidized (cystine and glutathione disulphide) aminothiols were quantified by high performance liquid chromatography in 1411 patients undergoing coronary angiography (mean age 63 years, male 66%). All patients were followed for a mean of 4.7±2.1 years for the primary outcome of all-cause death (n=247). Levels of cystine (oxidized) and glutathione (reduced) were associated with risk of death (p<0.001 both) before and after adjustment for covariates. High cystine and low glutathione levels (>+1 SD & <−1 SD respectively) were associated with higher mortality (adjusted HR 1.63 (95% CI 1.19–2.21; HR 2.19 (95% CI 1.50–3.19), respectively) compared to those outside these thresholds. Furthermore, the ratio of cystine/glutathione was also significantly associated with mortality (adjusted HR 1.92 (95% CI 1.39–2.64) and was independent of and additive to hs-CRP level. Similar associations were found for other outcomes of cardiovascular death and combined death and myocardial infarction.
Conclusions
A high burden of OS, quantified by the plasma aminothiols, cystine, glutathione and their ratio is associated with mortality in patients with CAD, a finding that is independent of and additive to the inflammatory burden. Importantly, this data supports the emerging role of non-free radical biology in driving clinically important oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.