A technique by which to print patterns and multilayers of scaffolding and living cells could be used in tissue engineering to fabricate tissue constructs with cells, materials, and chemical diversity at the micron scale. We describe here studies using a laser forward transfer technology to print single-layer patterns of pluripotent murine embryonal carcinoma cells. This report focuses on verifying cell viability and functionality as well as the ability to differentiate cells after laser transfer. We find that when cells are printed onto model tissue scaffolding such as a layer of hydrogel, greater than 95% of the cells survive the transfer process and remain viable. In addition, alkaline comet assays were performed on transferred cells, showing minimal single-strand DNA damage from potential ultraviolet-cell interaction. We also find that laser-transferred cells express microtubular associated protein 2 after retinoic acid stimulus and myosin heavy chain protein after dimethyl sulfoxide stimulus, indicating successful neural and muscular pathway differentiation. These studies provide a foundation so that laser printing may next be used to build heterogeneous multilayer cellular structures, enabling cell growth and differentiation in heterogeneous three-dimensional environments to be uniquely studied.
Pluripotent stem cells offer the potential for an unlimited source for cell therapy products. However, there is concern regarding the tumorigenicity of these products in humans, mainly due to the possible unintended contamination of undifferentiated cells or transformed cells. Because of the complex nature of these new therapies and the lack of a globally accepted consensus on the strategy for tumorigenicity evaluation, a case-by-case approach is recommended for the risk assessment of each cell therapy product. In general, therapeutic products need to be qualified using available technologies, which ideally should be fully validated. In such circumstances, the developers of cell therapy products may have conducted various tumorigenicity tests and consulted with regulators in respective countries. Here, we critically review currently available in vivo and in vitro testing methods for tumorigenicity evaluation against expectations in international regulatory guidelines. We discuss the value of those approaches, in particular the limitations of in vivo methods, and comment on challenges and future directions. In addition, we note the need for an internationally harmonized procedure for tumorigenicity assessment of cell therapy products from both regulatory and technological perspectives.
Exposure to jet fuel damages DNA and results in a number of physiological changes in liver, lung, immune, and neurological tissue. In this study the single-cell gel electrophoresis assay or comet assay was used to compare the DNA damage in human peripheral lymphocytes produced by three jet propulsion fuels: JP-8, JP-5, and JP-8+100. These fuels consist of complex mixtures of aliphatic, aromatic, and substituted naphthalene hydrocarbons. Two exposure times were investigated which correspond to estimated occupational exposure times and concentrations of fuels were used that were based on previous fuel toxicity studies. Analysis of samples for the extent of DNA damage as determined by tail moment and percent tail DNA was performed on exposed cells following a brief recovery time. All fuels produced significant increases in DNA damage; however, only JP-8+100 was genotoxic at the lowest exposure concentration (1:500). At the highest exposure concentration (1:75), the mean tail moments for JP-8 and JP-8+100 (32.041 +/- 2.599 and 45.774 +/- 4.743, respectively) were significantly greater than for JP-5 (1.314 +/- 0.474). These results indicate that JP-8+100 is the most potent inducer of DNA damage in human peripheral lymphocytes and that both JP-8+100 and JP-8 are capable of damaging lymphocyte DNA to a greater extent than JP-5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.