Metasurface absorbers are of particular interest in numerous photonic applications including detectors, photovoltaic cells, and emissivity coatings. We introduce a thin membrane silicon metasurface absorber with periodic elliptical holes that, as demonstrated theoretically and experimentally, achieves very high absorption (≥90%) over a ∼500 GHz bandwidth at normal incidence. Based on the analysis of the effective medium theory, the broadband absorption is attributed to proximal electric and magnetic dipole resonances. The absorption amplitude can also be tuned by ∼20% with above-gap photoexcitation. Due to the unit cell geometry, the carrier density on the top surface and sidewalls of the membrane must be taken into account. Our dynamic membrane silicon metasurface absorber is notably thin and CMOS-compatible, providing a promising platform to realize compact terahertz devices including detectors, modulators, and switches.
The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promising route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p-n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar stripline geometry, we demonstrate electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development of on-chip signal manipulation and highlight prospects for 2D materials in THz applications.
We theoretically investigate a new pathway for terahertz parametric amplification, initiated by above-gap optical excitation in the candidate excitonic insulator Ta 2 NiSe 5 . We show that after electron photoexcitation, electron-phonon coupling can lead to THz parametric amplification, mediated by squeezed oscillations of the strongly coupled phonon. The developed theory is supported by experimental results on Ta 2 NiSe 5 where photoexcitation with short pulses leads to enhanced terahertz reflectivity. We explain the key mechanism leading to parametric amplification in terms of a simplified Hamiltonian and demonstrate the validity of the simplified model in Ta 2 NiSe 5 using DFT ab-initio calculations. We identify a unique 4.7 THz infrared active phonon that is preferentially coupled to the electronic bandstructure, providing a dominant contribution to the low frequency terahertz amplification. Moreover, we show that the electron-phonon coupling is strongly dependent on the order parameter. Our theory suggests that the pumped Ta 2 NiSe 5 is a gain medium which can be used to create THz amplifiers in THz communication applications.
We present an experimental and numerical study of a terahertz metamaterial with a nonlinear response that is controllable via the relative structural arrangement of two stacked split ring resonator arrays. The first array is fabricated on an n-doped GaAs substrate, and the second array is fabricated vertically above the first using a polyimide spacer layer. Due to GaAs carrier dynamics, the on-resonance terahertz transmission at 0.4 THz varies in a nonlinear manner with incident terahertz power. The second resonator layer dampens this nonlinear response. In samples where the two layers are aligned, the resonance disappears, and the total nonlinear modulation of the on-resonance transmission decreases. The nonlinear modulation is restored in samples where an alignment offset is imposed between the two resonator arrays. Structurally tunable metamaterials and metasurfaces can therefore act as a design template for tunable nonlinear THz devices by controlling the coupling of confined electric fields to nonlinear phenomena in a complex material substrate or inclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.