Cardiovascular diseases (CVDs) are the leading cause of death today. The current identification method of the diseases is analyzing the Electrocardiogram (ECG), which is a medical monitoring technology recording cardiac activity. Unfortunately, looking for experts to analyze a large amount of ECG data consumes too many medical resources. Therefore, the method of identifying ECG characteristics based on machine learning has gradually become prevalent. However, there are some drawbacks to these typical methods, requiring manual feature recognition, complex models, and long training time. This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH Arrhythmia database. The five types of heartbeat features are classified, and wavelet self-adaptive threshold denoising method is used in the experiments. Compared with BP neural network, random forest, and other CNN networks, the results show that the model proposed in this paper has better performance in accuracy, sensitivity, robustness, and anti-noise capability. Its accurate classification effectively saves medical resources, which has a positive effect on clinical practice.
Most existing state-of-the-art deep learning algorithms discover sophisticated representations in huge datasets using convolutional neural networks (CNNs) that mainly adopt backpropagation (BP) algorithm as the backbone for training the face recognition problems. However, since decades ago, BP has been debated for causing trivial issues such as iterative gradient-descent operation, slow convergence rate, local minima, intensive human intervention, exhaustive computation, time-consuming, and so on. On the other hand, a competitive machine learning algorithm called extreme learning machine (ELM) emerged with extreme fast implementation and simple in theory has overcome the challenges faced by BP. The ELM advocates the convergence of machine learning and biological learning for pervasive learning and intelligence and has been extensively researched in widespread applications. Nonetheless, till date, none of the work of ELM has proved its competency in tackling face verification problem. Hence, in this paper, we are going to probe for the first time the feasibility of ELM-based network in handling the face verification task. We devise and propose a novel and distinguished hybrid local receptive field-based extreme learning machine with DeepID (hereinafter denoted as HELM -LRF-DeepID), to discriminate face pairs. The experimental results on the YouTube face database, labeled faces in the wild (LFW), and CelebFaces datasets have shed light upon the feasibility and usefulness of the HELM -LRF-DeepID in the face verification task. INDEX TERMS DeepID, extreme learning machine, face verification, tuning free feature mapping.
With the urban population’s growth, unethical and unmanaged waste disposal may negatively impact the environment. In many cities, a massive flow of people in municipal buildings or offices has generated vast amounts of waste daily, which correlates to the enormous expenses of waste management. The critical issue for better waste management is waste collection and sorting. In this study, the Electronic Smart Sorting- Internet of Things (ESS-IoT) is proposed to assist people in better waste management. The ESS-IoT system uses Raspberry Pi 4b as the microcontroller with three modules, and it is designed with two main functions: waste collection and waste classification. The two main functions have been deployed separately in the literature, while this study has combined both functions to achieve a more comprehensive smart bin waste disposal solution. Waste collection is triggered by the overflow alarm mechanism that employs ultrasonic and tracker sensors. On the other hand, the waste classification is implemented using two classification algorithms: Random Forest (RF) prediction model and Convolutional Neural Network (CNN) prediction model. An experiment is conducted to evaluate the accuracy of the two classification algorithms in classifying various types of waste. The waste materials under investigation can be classified into four categories: kitchen waste, recyclables, hazardous waste, and other waste. The results show that CNN is the better classification algorithm between the two. Future work proposes the research extension by introducing an incentive mechanism to motivate the household communities using a cloud-based competition platform incorporated with the ESS-IoT system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.