Transforming growth factor-s (TGF-s) are multifunctional growth factors that are secreted as inactive (latent) precursors in large protein complexes. These complexes include the latency-associated propeptide (LAP) and a latent transforming growth factor- binding protein (LTBP). Four isoforms of LTBPs (LTBP-1-LTBP-4) have been cloned and are believed to be structural components of connective tissue microfibrils and local regulators of TGF- tissue deposition and signaling. By using a gene trap strategy that selects for integrations into genes induced transiently during early mouse development, we have disrupted the mouse homolog of the human LTBP-4 gene. Mice homozygous for the disrupted allele develop severe pulmonary emphysema, cardiomyopathy, and colorectal cancer. These highly tissue-specific abnormalities are associated with profound defects in the elastic fiber structure and with a reduced deposition of TGF- in the extracellular space. As a consequence, epithelial cells have reduced levels of phosphorylated Smad2 proteins, overexpress c-myc, and undergo uncontrolled proliferation. This phenotype supports the predicted dual role of LTBP-4 as a structural component of the extracellular matrix and as a local regulator of TGF- tissue deposition and signaling.
The recently discovered cytokine interleukin (IL)-12 is a heterodimeric protein of two disulfide-bonded subunits of 35 and 40 kDa. IL-12 has multiple effects on T cells and natural killer (NK) cells. In particular it appears to be a major factor for the development of cellular immunity. So far activity of the single subunits alone has not been described, however their expression is regulated independently. In this report we demonstrate for the first time that the mouse IL-12 subunit p40 (IL-12p40) specifically antagonizes the effects of the IL-12 heterodimer in different assay systems. The proliferation of mouse splenocytes activated by phorbol ester and IL-12 was inhibited by IL-12p40, whereas the proliferation induced by phorbol ester and IL-2 was not affected. Furthermore, the synthesis of interferon (IFN)-gamma by mouse splenocytes activated with IL-2 and IL-12 was suppressed by IL-12p40. Purified mouse splenic CD4+ T cells produced IFN-gamma upon activation with plate-bound anti-CD3 monoclonal antibody which was enhanced more than tenfold in the presence of IL-12. In this system IL-12p40 inhibited only the enhancement caused by IL-12 but not IFN-gamma synthesis of CD4+ T cells stimulated with anti-CD3 alone. Moreover, IL-12p40 inhibited the effects of IL-12 on differentiated T helper type 1 (Th1) cells. IFN-gamma production by Th1 cells induced in a T cell receptor-independent way by macrophages and IL-2 or macrophages and IL-12 was greatly reduced by IL-12p40 providing evidence for the endogenous synthesis of IL-12 in the Th1 cell, macrophage and IL-2 co-cultures. The specificity of inhibition was clearly demonstrated in the homotypic aggregation assay of Th1 cells. Incubation of Th1 cells with either IL-2 and IL-12 or IL-2 and tumor necrosis factor induces LFA-1/ICAM-1-dependent aggregation. Only IL-2 + IL-12 but not IL-2 + tumor necrosis factor-induced aggregation was inhibited in a dose-dependent manner by IL-12p40. Thus, the IL-12 subunit p40 appears to be a specific inhibitor for the IL-12 heterodimer.
At least two subsets of CD4+ T helper cell lymphocytes termed Th1 and Th2 exist in the mouse and probably in humans. They are characterized by the secretion of different lymphokines and by their functional behavior. Dysregulated expansion of one or the other subset may be one reason for the development of certain diseases. Thus, it is of importance to define the signals involved in the differentiation and activation of the two Th cell subsets. It is known and has been confirmed in this report that the cytokine interleukin (IL)-1 acts on Th2 cells but not on Th1 cells. We now report that a previously identified cytokine which was provisionally termed T cell stimulating factor is identical with IL-12 and exhibits a reciprocal behaviour to IL-1. IL-12 has several effects on Th1 cells. It can induce the proliferation of certain Th1 cells in combination with IL-2. Synthesis of interferon (IFN)-gamma by Th1 cells can be triggered by IL-2 plus IL-12. In contrast to the IFN-gamma production observed after T cell receptor (TcR) CD3 stimulation of Th1 cells with lectin Concanavalin A the IFN-gamma production induced by IL-12 + IL-2 is insensitive to the immunosuppressive drug cyclosporin A. Furthermore, IL-12 enhances the TcR/CD3-induced synthesis of IFN-gamma of several Th1 clones. Finally, IL-12 (+IL-2) induces homotypic cell aggregation of Th1 clones. This type of cell aggregation depends on the participation of LFA-1 and ICAM-1 molecules. In all activation systems with Th1 cells no effect of IL-1 was demonstrable. In contrast, only IL-1 but not IL-12 served as a co-stimulatory signal for several Th2 cell lines activated via the TcR/CD3 complex.
Interleukin-12 (IL-12) is a heterodimeric cytokine that plays an important role in the regulation of the immune response. For biological activity the expression of both subunits of IL-12, p35 and p40, is required. Moreover, in the mouse the p40 chain of IL-12 specifically inhibits the effects of the IL-12 heterodimer. In the present study we have analyzed by in situ hybridization the expression of the p35 and p40 mRNA in the spleens of BALB/c and mutant (SCID, nude, beige) mice, unstimulated and after in vivo stimulation with lipopolysaccharide (LPS) and with staphylococcal enterotoxin B (SEB). In unstimulated spleens of BALB/c mice p35 and p40 mRNA were only detectable in a few strongly stained single cells, p35 mRNA was expressed in addition weakly in the B cell areas. After injection of LPS or SEB, p40 mRNA was strongly induced in the T cell areas all over the spleen, whereas expression of p35 mRNA and its distribution pattern did not change. Surprisingly, most of the mRNA for p35 and p40 was localized in different areas of the spleen and was apparently produced by different cells. In macrophage-depleted spleens the increased expression of p40 mRNA in response to LPS was reduced but still detectable, demonstrating that other cells besides macrophages can up-regulate IL-12 p40 mRNA. Nude mice showed a stronger expression of p35 mRNA, SCID mice lacked the weak p35 staining of the B cell areas but showed a strong basal expression of both p35 and p40 mRNA and a focal response to LPS. The pattern of IL-12 mRNA expression in beige mice was the same as in normal mice. These data demonstrate a spatial dissociation of expression of the two chains of IL-12 and are compatible with a regulatory role of the isolated IL-12 p40 chain in vivo. In addition, they indicate that the demonstration of mRNA for both chains of IL-12 in whole tissues or cell mixtures is not necessarily indicative of functional IL-12.
Ethanol inhibits astroglial cell proliferation, an effect that may contribute to the development of alcoholic embryopathy in humans. In the present study, we investigated inhibitory effects of ethanol and butanol isomers (1-, 2- and t-butanol) on astroglial cell proliferation induced by the strongly mitogenic phorbol ester, 4beta-phorbol-12alpha,13beta-dibutyrate (PDB). 4beta-Phorbol-12alpha,13beta-dibutyrate (PDB) induced a 10-fold increase of [3H] thymidine incorporation in cortical astrocytes prepared from newborn rats (EC50: 70 nM) which was blocked by Ro 31-8220, a cell-permeable protein kinase C (PKC) inhibitor. Ethanol blocked PDB-induced astroglial proliferation in a concentration-dependent manner; significant effects were already seen at 0.1% (v/v). Concomitantly, ethanol caused the formation of phosphatidylethanol (PEth) by phospholipase D (PLD) and reduced PLD-mediated formation of phosphatidic acid (PA). The butanols also inhibited the mitogenic action of phorbol ester; the inhibitory potency of the butanols was 1-butanol > 2-butanol > t-butanol. The same range of potencies was observed for the inhibitory activity of the butanols towards protein kinase C activity measured in vitro. At 0.3% concentration, 1-butanol potently suppressed the PDB-induced formation of phosphatidic acid while 2- and t-butanol were less active. Taken together, our results suggest that ethanol and 1-butanol exert a specific inhibitory effect on PKC-dependent astroglial cell proliferation by synergistically inhibiting PKC activity and the PLD signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.