Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.
Because of excellent biocompatibility, antioxidant activity, and anti-caries ability, epigallocatechin-3-gallate (EGCG) has been widely studied in the treatment of oral diseases, such as periodontal disease, oral cancer, and dental caries. To reach the site of the lesion or achieve sustained release, play the role of anti-caries, anti-inflammatory, or to maintain or improve the physical properties of the modified material, EGCG need to be cross-linked or embedded with dental adhesives, barrier membranes, bone replacement materials, tissue regeneration materials, and antimicrobial anti-caries materials to better prevent or treat oral diseases. This article reviews the applications of EGCG in oral materials, involving various areas of the oral cavity, reveals their excellent potential, and sees shortcomings in these research to promote the better development of EGCG applications in oral materials such as oral repair materials, bone tissue engineering materials and antibacterial and anti-caries materials.
In this paper, a jamming cancelation approach based on the concept of pulse diversity is proposed to suppress some newer complicated digital radio frequency memory (DRFM) range false targets (RFT). Just repeating the intercepted radar electromagnetic signal, as done in the conventional re-transmitting jammer, is not effective because only one range false target is produced. In contrast, the newer DRFM-based RFT generation methods, especially chopping and interleaving (C&I) and smeared spectrum (SMSP) can yield a multi-lobe filter output by transforming the internal structure of the intercepted radar signal. The presented approach to overcome this challenge is based on the temporal pulse diversity technique, and it does not require parameter estimation of the jamming signal. By transmitting pulses with specific transmission pulse block and the following proper processing, it can cancel out the protruding spikes of the jammer at the price of an acceptable performance loss. Particularly, this method is applicable to broad DRFM repeat jammer in electronic warfare (EW) area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.