In the field of music information retrieval (MIR), cover song identification (CSI) is a challenging task that aims to identify cover versions of a query song from a massive collection. Existing works still suffer from high intra-song variances and inter-song correlations, due to the entangled nature of version-specific and version-invariant factors in their modeling. In this work, we set the goal of disentangling version-specific and version-invariant factors, which could make it easier for the model to learn invariant music representations for unseen query songs. We analyze the CSI task in a disentanglement view with the causal graph technique, and identify the intra-version and inter-version effects biasing the invariant learning. To block these effects, we propose the disentangled music representation learning framework (DisCover) for CSI. DisCover consists of two critical components: (1) Knowledge-guided Disentanglement Module (KDM) and (2) Gradient-based Adversarial Disentanglement Module (GADM), which block intra-version and inter-version biased effects, respectively. KDM minimizes the mutual information between the learned representations and version-variant factors that are identified with prior domain knowledge. GADM identifies version-variant factors by simulating the representation transitions between intra-song versions, and exploits adversarial distillation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.