In the water transportation, ship speed estimation has become a key subject of intelligent shipping research. Traditionally, Automatic Identification System (AIS) is used to extract the ship speed information. However, transportation environment is gradually becoming complex, especially in the busy water, leading to the loss of some AIS data and resulting in a variety of maritime accidents. To make up for this deficiency, this paper proposes a vessel speed extraction framework, based on Unmanned Aerial Vehicle (UAV) airborne video. Firstly, YOLO v4 is employed to detect the ship targets in UAV image precisely. Secondly, a simple online and real time tracking method with a Deep association metric (Deep SORT) is applied to track ship targets with high quality. Finally, the ship motion pixel is computed based on the bounding box information of the ship trajectories, at the same time, the ship speed is estimated according to the mapping relationship between image space and the real space. Exhaustive experiments are conducted on the various scenarios. Results verify that the proposed framework has an excellent performance with average speed measurement accuracy is above 93% in complex waters. This paper also paves a way to further predict ship traffic flow in water transportation.
Accurate and real-time monitoring of the shoreline through cameras is an invaluable guarantee for the safety of near-shore navigation and berthing of unmanned surface vehicles; existing shoreline detection methods cannot meet both these requirements. Therefore, we propose an improved shoreline detection method to detect shorelines accurately and in real time. We define shoreline detection as the combination of water surface area segmentation and edge detection, the key to which is segmentation. To detect shorelines accurately and in real time, we propose an improved U-Net for water segmentation. This network is based on U-Net, using ResNet-34 as the backbone to enhance the feature extraction capability, with a concise decoder integrated attention mechanism to improve the processing speed while ensuring the accuracy of water surface segmentation. We also introduce transfer learning to improve training efficiency and solve the problem of insufficient data. When obtaining the segmentation result, the Laplace edge detection algorithm is applied to detect the shoreline. Experiments show that our network achieves 97.05% MIoU and 40 FPS with the fewest parameters, which is better than mainstream segmentation networks, and also demonstrate that our shoreline detection method can effectively detect shorelines in real time in various environments.
Determining the appropriate number and position of waypoints on a great circle route (GCR) helps to shorten the sailing distance, reduce the number of course changes, and well-approximate the GCR through a small number of rhumb line (RL) legs. In this study, a genetic algorithm-based method (i.e., the GA method) is proposed to optimize the positions of waypoints on the GCR when the number of waypoints is given. Furthermore, a fuzzy logic-based evaluation method for the number of waypoints (i.e., the FL method) is proposed to judge whether to add a new waypoint or stop the process by using the non-fixed values while considering both the number of waypoints and the remaining benefit of the GCR. According to the example demonstration results, the two methods proposed in this study can well-determine the number and position of waypoints and provide effective support for ocean route planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.