The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon-organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH(3))(2)CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer alpha-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current-voltage characterization. This has important implications for the creation of robust single-molecule devices.
Using density functional theory, we report detailed reaction path calculations for the reaction of acetone with the silicon (001) surface. We identify the key reaction intermediates of dissociative adsorption and the transition states between them. This resolves the identity of the one-dimer intermediate observed in STM experiments and its role in the formation of several two-dimer-wide end products of dissociation. Key to the understanding of the dissociation mechanism is the ambiphilic character of the two reactants, that is the simultaneous expression of electrophilic and nucleophilic reactivities in both the surface and the acetone molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.