This research is aimed at the formation of applied orientation of future teachers' training using tools of Information and Communication Technology (ICT). To be successful in their career future teachers should have profound essential knowledge, put this knowledge to use, be well trained in general and major subjects and be able to improve their skills during their professional activity and to use up-to-date ICT tools. A methodological system was worked out during the research for this purpose. This methodological system has also undergone an experimental efficiency test. About 76 students from three different universities took part in the experiment. The results of the pedagogical experiment have verified our hypothesis that the offered procedure of educational process organization and implementation using ICT proves to be beneficial for improving quality of students' applicative knowledge and skills and increasing their interest in studying general and major subjects.
This article presents results of the study on the dependence of the structural-phase state of alloys based on Ti-12.52Al-43.08Nb system (wt.-%) on the temperature of spark plasma sintering. It has been established that spark plasma sintering of Ti-Al-Nb alloys under the temperature of 1500 °C resulted in melting the aluminum component of the mixture that, in turn, negatively affects the quality of ready products. It has also been shown that stepping up the sintering temperature from 1000 °C to 1300 °C leads to increasing volume fraction of O-phase up to 49.63 % due to rapid precipitation of O-phase from B2-phase and Ti3Al-phase. It has been revealed that intermetallic composites obtained under the temperature of 1300 °C are characterized by a dominant two-phase В2+О structure which is more suitable for strengthening sorption properties of hydrogen-storing materials based on Ti-Al-Nb.
This work deals with the study of changes in the dislocation structure and quantitative characteristics, as well as morphological components, of 0.34Cr-1Ni-Mo-Fe steel before and after plasma electrolytic hardening. According to the electron microscopic studies of the fine structure of 0.34Cr-1Ni-Mo-Fe steel before and after plasma electrolytic hardening, 0.34Cr-1Ni-Mo-Fe steel is a multiphase material containing an α-phase, a γ-phase (retained austenite), and a cementite and carbide phase. It was revealed that, morphologically, the α-phase in the initial state, generally, is present in the form of: lamellar pearlite with a volume fraction of 35%, a ferritocarbide mixture with a volume fraction of 45%, and fragmented ferrite with a volume fraction of 20% of the material. After surface hardening, the morphological components of the structure changed: packet–lamellar martensite with volume fractions of 60% and 40%, 5% and 7% of γ-phase as residual austenite in the crystals of packet–lamellar martensite, 0.6% and 1.5% of cementite in crystals of packet–lamellar martensite, and 0.15% and 0.35% of complex carbide М23С6 in crystals of packet–lamellar martensite, respectively, were observed. The quantitative characteristics of the dislocation structure were estimated by the following calculated indices of packet and lamellar martensite: scalar (ρ) and excess (ρ±) density of dislocations, the value of the curvature-torsion of the crystal lattice (χ), the amplitude of long-range internal stresses (σd), and the amplitude of shear stresses (σL), according to which the plastic nature of the bending-torsion of the crystal lattice was confirmed (σL > σd).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.