Background:Due to advances in high-frequency ultrasound technology, it is easier to detect fine structures of skin lesions. The aim of this study was to examine the ultrasonographic features and use recurrence risk stratification to assess the diagnostic performance of pre-operative ultrasound examination of basal cell carcinoma (BCC).Methods:This was a retrospective study. Forty-six BCC lesions underwent pre-operative ultrasound examination using 50- and 20-MHz probes. Ultrasonographic shape, margin, internal echoes, hyper-echoic spots, posterior echoes, and depth of the lesion were evaluated and correlated with the risk of recurrence based on histological features.Results:Forty-two patients had 46 skin lesions in total. The high-risk (n = 6) and low-risk (n = 40) groups exhibited considerable overlap in the ultrasonographic manifestations and no significant difference in margin (χ2 = 3.231, P = 0.072), internal echo (χ2 = 1.592, P = 0.207), or posterior echo (P = 0.169). However, high-risk BCCs tended to be irregular in shape than low-risk lesions (χ2 = 4.313, P = 0.038). Both types presented hyper-echoic spots (χ2 = 1.850, P = 0.174). Additionally, 78% of low-risk lesions were confined to the dermis (31/40), and 100% of high-risk lesions infiltrated into the sub-cutaneous tissue, resulting in a significant difference between the two groups (χ2 = 10.951, P = 0.001). Ultrasound detected sub-clinical lesions in five patients.Conclusions:High-frequency ultrasound can provide important information for pre-operative evaluation of risk in BCC foci and reveal hidden lesions. The technique may play a crucial role in guiding therapeutic options for BCC.
Background: We previously reported that immune activation in the spinal dorsal horn contributes to pain induced by chronic pancreatitis (CP). Targeting immune response in the CNS may provide effective treatments for CP-induced pain. Recent findings demonstrate that resolvin D1 (RvD1) can potently dampen inflammatory pain. We hypothesized that intrathecal injection of RvD1 may inhibit pain of CP. Methods: Rat CP model was built through intrapancreatic infusion of trinitrobenzene sulfonic acid (TNBS). All the rats were divided into three groups: TNBS, sham, and naïve controls and were further divided for intrathecal RvD1 administration. Pain behavior of rats was tested with von Frey filaments. Anxiety-like behavior and free locomotor and exploration of rats were evaluated by open field test and elevated plus maze. Pancreatic histology was evaluated with hematoxylin and eosin staining. Phosphorylation of NMDA receptor and expression of inflammatory cytokines were examined with Western blot, real-time RT-PCR and ELISA. Results: Behavioral study indicated that compared to the vehicle control, RvD1 (100 ng/kg) significantly decreased TNBS-induced mechanical allodynia at 2 h after administration (response frequencies: 49.2 ± 3.7% vs 71.3 ± 6.1%), and this effect was dose-dependent. Neither CP nor RvD1 treatment could affect anxiety-like behavior. CP or RvD1 treatment could not affect free locomotor and exploration of rats. Western blot analysis showed that compared with that of naïve group, phosphorylated NR1 (pNR1) and pNR2B in TNBS rats were significantly increased in the spinal cord (pNR1: 3.87±0.31 folds of naïve control, pNR2B: 4.17 ± 0.24 folds of naïve control). Compared to vehicle control, 10 ng/kg of RvD1 could significantly block expressions of pNR1 (2.21 ± 0.26 folds of naïve) and pNR2B (3.31 ± 0.34 folds of naïve). Real-time RT-PCR and ELISA data showed that RvD1 (10 ng/kg) but not vehicle could significantly block expressions of TNF-alpha, IL-1beta and IL-6. In addition, RvD1 did not influence pain behavior, NMDA receptor phosphorylation or cytokines production in sham-operated rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.