For two parties sharing the original state, a scheme for remote preparation of the two-particle entangled state by three partial two-particle entangled states as the quantum channel is presented, and then directly generalize the scheme for remotely preparing a multipartite GHZ-class state for M senders. It is shown that the receiver can obtain the unknown state with certain probability under the condition that only and only if all the senders collaborate with each other. The N -particle projective measurement and the von Neumann measurement are needed in our scheme. The probability of the successful remote state preparation and classical communication cost are calculated.
A three-party scheme for securely sharing an arbitrary unknown single-qutrit state is presented. Using a general Greenberger-Horne-Zeilinger (GHZ) state as the quantum channel among the three parties, the quantum information (i.e., the qutrit state) from the sender can be split in such a way that the information can be recovered if and only if both receivers collaborate. Moreover, the generation of the scheme to multi-party case is also sketched.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.