Carbon nanotube/poly(urethane) films for antistatic application with high transparency, low sheet resistance and strong adhesion were obtained by optimizing the ratio of SWCNT to WPU.
Single-walled carbon nanotubes (SWCNTs) were dispersed in water with the help of a combination of surfactants to achieve a high concentration SWCNT ink. Transparent conducting films (TCFs) were fabricated through a rod-coating method using the SWCNT ink. The addition of binders (polyacrylic acid or carboxymethyl cellulose) greatly enhanced the adhesion of SWCNT films to substrates and the cohesion between CNTs, which produced a uniform film of SWCNTs by preventing damage during the post-treatment process. The thickness of SWCNT films is controlled by the amount of SWCNTs in the solution and the diameter of the wire used. To test the film adhesion, Scotcht tape was used to detach some loosely bound SWCNTs. Then the SWCNT films were further post-treated with nitric acid to improve the conductivity. The addition of polyacrylic acid to the SWCNT dispersion improved the film adhesion obviously without decreasing its electrical conductivity. This rod-coating method demonstrates great potential for the scalable fabrication of flexible SWCNT-TCFs.
A small molecule was grafted onto the graphene oxide surfaces using two different approaches and the obtained amine-modified graphene oxides have excellent thermal stability and significantly enhanced water/air contact angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.