Intratumor heterogeneity (ITH) contributes to cancer progression and chemoresistance. We sought to comprehensively describe ITH of somatic mutations, copy number, and transcriptomic alterations involving clinically and biologically relevant gene pathways in colorectal cancer (CRC). We performed multiregion, high‐depth (384× on average) sequencing of 799 cancer‐associated genes in 24 spatially separated primary tumor and nonmalignant tissues from four treatment‐naïve CRC patients. We then used ultra‐deep sequencing (17 075× on average) to accurately verify the presence or absence of identified somatic mutations in each sector. We also digitally measured gene expression and copy number alterations using NanoString assays. We identified the subclonal point mutations and determined the mutational timing and phylogenetic relationships among spatially separated sectors of each tumor. Truncal mutations, those shared by all sectors in the tumor, affected the well‐described driver genes such as APC, TP53, and KRAS. With sequencing at 17 075×, we found that mutations first detected at a sequencing depth of 384× were in fact more widely shared among sectors than originally assessed. Interestingly, ultra‐deep sequencing also revealed some mutations that were present in all spatially dispersed sectors, but at subclonal levels. Ultra‐high‐depth validation sequencing, copy number analysis, and gene expression profiling provided a comprehensive and accurate genomic landscape of spatial heterogeneity in CRC. Ultra‐deep sequencing allowed more sensitive detection of somatic mutations and a more accurate assessment of ITH. By detecting the subclonal mutations with ultra‐deep sequencing, we traced the genomic histories of each tumor and the relative timing of mutational events. We found evidence of early mixing, in which the subclonal ancestral mutations intermixed across the sectors before the acquisition of subsequent nontruncal mutations. Our findings also indicate that different CRC patients display markedly variable ITH, suggesting that each patient's tumor possesses a unique genomic history and spatial organization.
No abstract
Background Wnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized. Methods We comprehensively mapped Wnt-regulated lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model and examined the response of lncRNAs to Wnt inhibition between in vivo and in vitro cancer models. We further annotated and characterized these Wnt-regulated lncRNAs using existing genomic classifications (using data from FANTOM5) in the context of Wnt signaling and inferred their role in cancer pathogenesis (using GWAS and expression data from the TCGA). To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation both in vivo and in vitro. Results We identified 3633 lncRNAs, of which 1503 were regulated by Wnt signaling in an orthotopic Wnt-addicted pancreatic cancer model. These lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. Our analysis suggested that Wnt signaling inhibition could influence the co-expression relationship of Wnt-regulated lncRNAs and their eQTL-linked protein-coding genes. Wnt-regulated lncRNAs were also implicated in specific gene networks involved in distinct biological processes that contribute to the pathogenesis of cancers. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1503) of the Wnt-regulated lncRNAs were found to modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1503) that had a functional effect on cancer cell growth. Conclusions Our study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling, and establishes a framework for systematic discovery of functional lncRNAs.
Through doing spot monitoring on stability of slope engineering management of Longmenhao Primary School, this paper does analysis on monitoring data for one month. Analysis results show that all of accumulation maximum displacement, change rate of horizontal displacement and accumulation maximum settlement of slope of Longmenhao Primary School do not surpass warning value thus knowing that slope of this section is basically stable which also provides references for stability detection analysis of engineering management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.