The antibacterial activity of 14 essential oils and their major constituents in the gaseous state was evaluated against Haemophilus influenzae, Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus. For most essential oils examined, H. influenzae was most susceptible, followed by S. pneumoniae and S. pyogenes, and then S. aureus. Penicillin-susceptible and -resistant S. pneumoniae were comparable in susceptibility. Escherichia coli, which was used as a control, showed least susceptibility. A minimal inhibitory dose (MID) was introduced as a measure of the vapour activity. Among 14 essential oils, cinnamon bark, lemon-grass and thyme oils showed the lowest MID, followed by essential oils containing terpene alcohols as major constituents. The essential oils containing terpene ketone, ether and, in particular, hydrocarbon had high MIDS. The vapour activity on short exposure was comparable to that following overnight exposure, and rapid evaporation was more effective than slow evaporation of essential oils. The vapour concentration and absorption into agar of essential oils reached a maximum 1 or 2 h after rapid evaporation. These results indicate that the antibacterial action of essential oils was most effective when at high vapour concentration for a short time.
The inhibitory effect of seven essential oils on the apical growth of hyphae of Aspergillus fumigatus was studied using a bio cell tracer by vapour contact in a sealed vessel. Based on the inhibitory pattern, these essential oils were classified into three groups. The first group, composed of citron, lavender and tea tree oils, stopped the apical growth in a loading dose of 63 micrograms ml-1 air, but allowed the regrowth of the hyphae after removal of the vapour, indicating fungistatic action. The second group, consisting of perilla and lemon-grass oils, stopped the apical growth in a loading dose of 6.3 micrograms ml-1 air, and did not allow the regrowth after gaseous contact at 63 micrograms ml-1 air, indicative of fungicidal action. The third group, consisting of cinnamon bark and thyme oils, retarded the growth in a dose of 6.3 micrograms ml-1 air, stopped it in a dose of 63 micrograms ml-1 air, and incompletely suppressed regrowth of the hyphae. Gas chromatographic analysis revealed that vapours of essential oils were absorbed on fungal mycelia and agar medium most abundantly by the first group, followed by the second and third groups, reflecting the volatility of the respective groups. Suppression of the apical growth by vapour contact was ascribed to the direct deposition of essential oils on fungal mycelia, together with an indirect effect via the agar medium absorbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.