Volatile compounds with antifungal activity produced by edible mushrooms have potential as biological control agents to combat fungal diseases and reduce fungicide use in agriculture. Here we investigated the antifungal activity of volatile compounds produced by the edible mushroom Hypsizygus marmoreus (TUFC 11906) against eight phytopathogenic fungi. The results showed that volatile compounds from the mycelia and culture filtrates (CFs) of H. marmoreus had antifungal activity against some phytopathogenic fungi. Among them, the mycelial growth and conidial germination of Alternaria brassicicola were significantly inhibited by 60 and 100%, respectively. Moreover, the volatile compounds from CFs inhibited the lesion formation of A. brassicicola on detached cabbage leaves by 94%. The volatile compounds had higher antifungal activity against A. brassicicola than other fungi. With the removal of the volatile compounds from conidia of A. brassicicola, the conidia began to germinate, which indicates fungistatic activity of the compounds. The volatile compounds were isolated from the CFs of H. marmoreus, and the major volatile compound with antifungal activity was estimated to be 2-methylpropanoic acid 2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl ester. As the volatile compound produced by H. marmoreus is a product of an edible mushroom and has fungistatic activity against some phytopathogenic fungi, especially A. brassicicola, it may be possible to use the compounds as a novel safe agent for protecting crops in the field and during storage.
Volatiles produced by mycelia of mushrooms with aromatic odour were investigated for their antifungal activity against plant‐pathogenic fungi. The results of the screening of 23 species of basidiomycetes revealed that volatile substances from mycelia of Mycoleptodonoides aitchisonii (TUFC10099), an edible mushroom, strongly inhibited the mycelial growth, spore germination and lesion formation on host leaves of some plant‐pathogenic fungi including Alternaria alternata, A. brassicicola, A. brassicae, Colletotrichum orbiculare and Corynespora cassiicola. The volatile compounds were isolated from the culture filtrate of M. aitchisonii, and 1‐phenyl‐3‐pentanone was identified as a major antifungal volatile. The compound had significantly inhibitory activity against plant‐pathogenic fungi at 35 ppm. This is the first report that the volatile compound produced by mycelia of M. aitchisonii has antifungal activity against plant‐pathogenic fungi.
Aims: In this study, volatile compounds released from mycelia of some aromatic mushrooms were investigated for their inhibitory activity against plant-pathogenic bacteria and fungi. Methods and Results: A screening revealed that volatile compounds from mycelia of Porostereum spadiceum remarkably inhibited the colony formation of plant-pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum while also inhibiting the conidial germination of plant-pathogenic fungi including Alternaria brassicicola and Colletotrichum orbiculare. The volatile compounds were isolated from the culture filtrate of P. spadiceum, and 3,4-dichloro-4-methoxybenzaldehyde (DCMB) was identified as a major compound. DCMB significantly inhibited bacterial colonization at 10 lg ml À1 and fungal conidial germination at 0Á1-1 lg ml À1 as a vapour. Conclusions: This is the first report on the production of the volatile compound DCMB by P. spadiceum and on the antimicrobial activity of DCMB against plant-pathogenic bacteria and fungi at low concentrations. It may be possible to use the compound as an agent for protecting crops from bacterial and fungal diseases during cultivation and storage. Significance and Impact of the Study: This study provides an understanding of antimicrobial activity of the mushroom volatile compound that may be useful as a novel biological control agent for protecting various plant diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.