Blue laser diodes (LDs) were fabricated on m-plane oriented GaN substrates by atmospheric-pressure metalorganic chemical vapor deposition. Typical threshold current for stimulated emission at a wavelength λ of 463 nm was 69 mA. Blueshift of the spontaneous emission peak with increasing injection current was examined in LDs fabricated on m- and c-plane GaN substrates. Blueshifts for the m-plane LD (λ=463 nm) and the c-plane LD (λ=454 nm) with an injection current density just below threshold were about 10 and 26 nm, respectively. These results confirm that the blueshift in quantum-wells fabricated on m-plane oriented substrates is smaller than on c-plane oriented substrates due to the absence of polarization-induced electric fields.
Self-pulsating InGaN laser diodes with a p-type InGaN saturable absorber (SA) layer are demonstrated. The SA layer consists of a 1-nm-thick p-type InGaN well surrounded by 2-nm-thick p-type In0.02Ga0.98N barriers. The lower barrier of the SA is located on the 18-nm-thick p-type Al0.3Ga0.7N evaporation-prevention layer of the active region. Self-pulsation is demonstrated for output powers in the range 4 to 22 mW with corresponding self-pulsation frequencies in the range 1.6 to 2.9 GHz. Results indicate that the position of the SA layer in the structure has a strong influence on the carrier lifetime and is responsible for the observation of self-pulsation in these devices.
Abstract-Room-temparature operation of self-pulsating InGaN lasers was obtained at a wavelength of 395 nm. The laser structure consists of a multiquantum-well InGaN active layer and a p-type InGaN single-quantum-well saturable absorber. The frequency range of the self-pulsation was from 1.6 to 2.9 GHz. The experimental results were well explained with our theoretical analysis. We found that features of the saturable absorber strongly affect the self-pulsation. Influence of device and material parameters on the laser dynamics was also investigated.Index Terms-Room temperature, saturable absorber, self-pulsation, violet InGaN laser.
Highly reliable operation of 405 nm laser diodes for high-density optical storage was demonstrated. Introduction of epitaxially grown AlON layer between the front facet and normal coating layer was shown to be effective to suppress catastrophic optical damage at the laser facet. Stable operation in excess of 1000 h was confirmed at an output power of 500 mW in a pulsed-mode at a case temperature of 80 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.