This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.
We investigated joint coordination differences between Taekwondo back kicks and jumping back kicks, and how jumping (in performing the latter) would alter engaging ground reaction forces (GRF) in executing kicking. Ten skilful athletes volunteered to perform both kinds of kicking within the shortest time for three successful trials. Three high-speed cameras and two force platforms were used for data collection, and the trial with the shortest execution time was selected for analysis. Movements were divided into the rotation and attack phases. With comparable execution time and maximum joint linear/angular speeds, back kicks and jumping back kicks differ mainly in larger GRF in the latter, and in greater target acceleration in the former probably because the support leg prevented athletes' rebounding after impact. In addition, more prominent antiphase and in-phase coordination between the shoulder segment and knee joint, and elongated rotation phase were found in jumping back kicks. Larger GRF values in jumping back kicks were generated for jump take-off rather than for a more powerful attack. In back kicks although the support leg remained ground contact, greatly decreased GRF in the attack phase suggested that the support leg mainly served as a rotation axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.