This work presents the studies of wettability Sn-6Zn-4Bi lead-free solder alloy in electronic applications. A reference solder Sn-3.1Ag-0.9 Cu lead-free solder alloy is used to compare the properties of both solders. Differential Scanning Calorimeter (DSC) profile, wettability and the microstructure of the solder were investigated. The melting temperature of Sn-Zn-Bi (Tm=194.97°C) is lower than Sn-Ag-Cu (Tm=220.40°C). Further, the wettability between molten solder and copper substrate was measured at different reflow temperature. The contact angle for Sn-Ag-Cu was decreasing from 28.23º to 24.97º and for Sn-Zn-Bi solder alloys were decreasing from 48.92º to 29.78º as the temperature increased from 230°C to 250°C. A significant increment of contact angle for Sn-Zn-Bi at 270°C and the contact angle did not change at 270°C for Sn-Ag-Cu. The result of spreading area is inversed with the contact angle. The layers of intermetallic compound were examined by energy-dispersive X-ray. The Sn-Zn-Bi solder exhibits a mixture of Cu-Sn+Cu-Zn phase and ϒ-Cu5Zn8 phase. The Sn-Ag-Cu solder exhibits Cu6Sn5 (η-phase) and Cu3Sn (ε-phase). As a conclusion, Sn-Zn-Bi is a potential lead-free solder to develop based on its wettability properties than previous available solder materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.