In this work, the vertical structure photodetector based on CsPbBr3 quantum dots (QDs) with a structure of indium tin oxide (ITO)/zinc oxide (ZnO)/CsPbBr3 QDs/Au is reported. In this device, CsPbBr3 QDs film works as the light‐harvesting layer, and ZnO QDs film acts as the electron transport channel, which can extract the electron efficiently and improve the quality of CsPbBr3 QDs film. As a result, the on/off ratio, detectivity and rise time (decay time) of CsPbBr3/ZnO hybrid photodetector are measured to be 2.4 × 106, 2.25 × 1011, and 62 milliseconds (82 ms) under 0‐V bias. This work inspires the development of vertical structure photodetectors based on the all‐inorganic perovskite QDs.
CsPbBr3-based photodetectors (PDs) have aroused enormous attention owing to their low-cost solution processing, outstanding optoelectronic properties, and remarkable stability. However, their performances remain a big challenge to meet the requirement...
Taking advantage of a large light absorption coefficient, long charge carrier diffusion length and low-cost solution processing, all-inorganic halides perovskite CsPbBr3 quantum dots (QDs) are combined with a ZnO QD film to construct a high-performance photodetector. In this work, a novel photodetector device based on transistor structure with dual active layers composed of CsPbBr3 and ZnO film is proposed. In this structure, CsPbBr3 film functions as the light-absorbing layer and ZnO film acts as the conducting layer. Owing to the high electron mobility and hole-blocking nature of the ZnO QDs film, the photo-induced electron-hole pairs can be separated efficiently. As a result, the device exhibits high performance with response of 43.5 A/W, high detection up to 5.02 × 1011 Jones and on/off ratio of 5.6 × 104 under 365 nm light illumination. Compared with the ZnO-only phototransistor (the photodetector with the structure of transistor) the performance of the CsPbBr3 phototransistor showed significant improvement, which is superior to the majority of photodetectors prepared by perovskite. This work demonstrates that the ZnO QDs film can be applied in the photodetector device as a functional conducting layer, and we believe that the hybrid CsPbBr3/ZnO phototransistor would promote the development of low-cost and high-performance photodetectors.
The CdSe/ZnS quantum dots (QDs) have drawn the attention of the researchers due to their superior photophysical properties and their applications in QD-based light-emitting diodes (QLEDs). The conventional CdSe/ZnS-based QLED uses a highly conductive electron-transport layer, low-mobility hole-transporting layers (HTLs), and a vacuum-deposited opaque metal electrode at the top. This structure renders unbalanced charge injection into the emissive layer and also allows the device to emit light only at the bottom side, which affects the device output luminance and stability. Moreover, in the vacuum-deposition technique, the fabrication process is more complex, expensive, and time-consuming. To address all these issues, we fabricated an all-solution processable double-sided emitting QLED by a nonvacuum technique using high mobility multi-HTLs with a cascade structure, an insulating layer, and a transparent silver nanowire (AgNW) electrode for balanced charge injection for obtaining higher luminance at the top-side AgNW electrode. The as-fabricated QLED exhibited a very low turn-on voltage and high luminance of 2.2 V and 41,010 cd m −2 , respectively. The QLED has also shown a high current efficiency of 15.2 cd A −1 , a luminous efficiency of 16.2 lm W −1 , and an external quantum efficiency of 8.2% at the top-side. These results indicate that the double-sided emitting QLED device opens up a pathway for designing next-generation lighting and display devices.
Repeated or prolonged anesthesia to pregnant women disturbs neurodevelopment of developing infants, but its mechanism has not been elaborated absolutely. This study was conducted to investigate the mechanism of potential neurotoxicity on their offspring generation after sevoflurane anesthesia in adult animals during pregnancy based on metabolomics. 16 pregnant rats were equally assigned to sevoflurane group and control group, and serum samples were collected from their 7-day-old offspring for metabolomics analysis using ultra performance liquid chromatography coupled to time-of-flight mass spectrometry. Principal component analysis and partial least squares-discriminate analysis were used for pattern recognition, and pathway analysis was performed by MetaboAnalyst platform. 29 metabolites were discovered as neurotoxicity related-biomarkers, among which S-Adenosylmethioninamine was inhibited dramatically after sevoflurane exposure. Prenatal exposure to sevoflurane led to a significant reduction in S-Adenosylmethionine level, as shown by enzyme-linked immunosorbent assay. Pathway analysis highlighted that prenatal exposure to sevoflurane induced alteration in arginine/proline metabolism, cysteine/methionine metabolism, and so on. The most important altered metabolic pathway was arginine/proline metabolism. This study suggests that abnormal methylation and disturbed arginine/proline metabolism may crucially contribute to the mechanism with neurotoxicity on offspring generation after sevoflurane anesthesia in adult animals during pregnancy, and dietary supplement of S-Adenosylmethionine and modulating arginine/proline metabolism may be the potential therapeutic targets for protecting neurodevelopment from detrimental effects of prenatal exposure to inhalational anesthetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.