Contention for shared memory, in the forms of true sharing and false sharing, is a challenging performance bug to discover and to repair. Understanding cache contention requires global knowledge of the program's actual sharing behavior, and can even arise invisibly in the program due to the opaque decisions of the memory allocator. Previous schemes have focused only on false sharing, and impose significant performance penalties or require non-trivial alterations to the operating system or runtime system environment. This paper presents the Light, Accurate Sharing dEtection and Repair (LASER) system, which leverages new performance counter capabilities available on Intel's Haswell architecture that identify the source of expensive cache coherence events. Using records of these events generated by the hardware, we build a system for online contention detection and repair that operates with low performance overhead and does not require any invasive program, compiler or operating system changes. Our experiments show that LASER imposes just 2% average runtime overhead on the Phoenix, Parsec and Splash2x benchmarks. LASER can automatically improve the performance of programs by up to 19% on commodity hardware.
ABSTRACTContention for shared memory, in the forms of true sharing and false sharing, is a challenging performance bug to discover and to repair. Understanding cache contention requires global knowledge of the program's actual sharing behavior, and can even arise invisibly in the program due to the opaque decisions of the memory allocator. Previous schemes have focused only on false sharing, and impose significant performance penalties or require non-trivial alterations to the operating system or runtime system environment. This paper presents the Light, Accurate Sharing dEtection and Repair (LASER) system, which leverages new performance counter capabilities available on Intel's Haswell architecture that identify the source of expensive cache coherence events. Using records of these events generated by the hardware, we build a system for online contention detection and repair that operates with low performance overhead and does not require any invasive program, compiler or operating system changes. Our experiments show that LASER imposes just 2% average runtime overhead on the Phoenix, Parsec and Splash2x benchmarks. LASER can automatically improve the performance of programs by up to 19% on commodity hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.