Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expressed genes (DEGs) for resistance to in-vitro seed colonization (IVSC) at four critical stages after inoculation in J 11 (resistant) and JL 24 (susceptible) genotypes of groundnut. About 1,344.04 million sequencing reads have been generated from sixteen libraries representing four stages in control and infected conditions. About 64% and 67% of quality filtered reads (1,148.09 million) were mapped onto A (A. duranensis) and B (A. ipaёnsis) subgenomes of groundnut respectively. About 101 million unaligned reads each from J 11 and JL 24 were used to map onto A. flavus genome. As a result, 4,445 DEGs including defense-related genes like senescence-associated proteins, resveratrol synthase, 9s-lipoxygenase, pathogenesis-related proteins were identified. In A. flavus, about 578 DEGs coding for growth and development of fungus, aflatoxin biosynthesis, binding, transport, and signaling were identified in compatible interaction. Besides identifying candidate genes for IVSC resistance in groundnut, the study identified the genes involved in host-pathogen cross-talks and markers that can be used in breeding resistant varieties.
HighlightA gene expression atlas of pigeonpea revealed spatio-temporal gene expression, co-expressed gene clusters and an important gene network critical for normal pollen and seed development.
The genome sequences of 16 Streptomyces strains, showing potential for plant growth-promotion (PGP) activities in rice, sorghum, chickpea and pigeonpea, isolated from herbal vermicompost, have been decoded. The genome assemblies of the 16 Streptomyces strains ranged from 6.8 Mb to 8.31 Mb, with a GC content of 72 to 73%. The extent of sequence similarity (in terms of shared ortholog) in 16 Streptomyces strains showed 70 to 85% common genes to the closest publicly available Streptomyces genomes. It was possible to identify ~1,850 molecular functions across these 16 strains, of which close to 50% were conserved across the genomes of Streptomyces strains, whereas, ~10% were strain specific and the rest were present in various combinations. Genome assemblies of the 16 Streptomyces strains have also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, auxin, hydrocyanic acid, chitinase and cellulase. Further, the genome assemblies provided better understanding of genetic similarity among target strains and with the publically available Streptomyces strains.
ABSTRACT. A population-based study was undertaken to evaluate linkage between single-nucleotide polymorphisms known as risk factors and type 2 diabetes in an Indian population. The study population was comprised of 40 normal glucose-tolerant individuals (21 males and 19 females) and 40 type 2 diabetes patients (21 males and 19 females). The genes and their corresponding single-nucleotide polymorphisms that we screened were VDR (rs 731236 and rs 1544410), IL-6 (rs 1800795), TCF7L2 (rs 7903146) and TNF-α (rs 1800629). The risk alleles were more frequent in the subjects with type 2 diabetes, except for the TNF-α gene, which was very infrequent in the population; the normal allele occurred at high and similar frequencies in both normal and diabetic individuals.
Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.