Tuberculosis, commonly known as TB, is the second most fatal infectious disease after AIDS, caused by bacterium called Mycobacterium tuberculosis. Prolonged treatment, high pill burden, low compliance, and stiff administration schedules are factors that are responsible for emergence of MDR and XDR cases of tuberculosis. Till date, only BCG vaccine is available which is ineffective against adult pulmonary TB, which is the most common form of disease. Various unique antibodies have been developed to overcome drug resistance, reduce the treatment regimen, and elevate the compliance to treatment. Therefore, we need an effective and robust system to subdue technological drawbacks and improve the effectiveness of therapeutic drugs which still remains a major challenge for pharmaceutical technology. Nanoparticle-based ideology has shown convincing treatment and promising outcomes for chronic infectious diseases. Different types of nanocarriers have been evaluated as promising drug delivery systems for various administration routes. Controlled and sustained release of drugs is one of the advantages of nanoparticle-based antituberculosis drugs over free drug. It also reduces the dosage frequency and resolves the difficulty of low poor compliance. This paper reviews various nanotechnology-based therapies which can be used for the treatment of TB.
Herein, we describe a novel cloning strategy for PCR-amplified DNA which employs the type IIs restriction endonuclease BsaI to create a linearized vector with four base-long 5′-overhangs, and T4 DNA polymerase treatment of the insert in presence of a single dNTP to create vector-compatible four base-long overhangs. Notably, the insert preparation does not require any restriction enzyme treatment. The BsaI sites in the vector are oriented in such a manner that upon digestion with BsaI, a stuffer sequence along with both BsaI recognition sequences is removed. The sequence of the four base-long overhangs produced by BsaI cleavage were designed to be non-palindromic, non-compatible to each other. Therefore, only ligation of an insert carrying compatible ends allows directional cloning of the insert to the vector to generate a recombinant without recreating the BsaI sites. We also developed rapid protocols for insert preparation and cloning, by which the entire process from PCR to transformation can be completed in 6–8 h and DNA fragments ranging in size from 200 to 2200 bp can be cloned with equal efficiencies. One protocol uses a single tube for insert preparation if amplification is performed using polymerases with low 3′-exonuclease activity. The other protocol is compatible with any thermostable polymerase, including those with high 3′-exonuclease activity, and does not significantly increase the time required for cloning. The suitability of this method for high-throughput cloning was demonstrated by cloning batches of 24 PCR products with nearly 100% efficiency. The cloning strategy is also suitable for high efficiency cloning and was used to construct large libraries comprising more than 108 clones/µg vector. Additionally, based on this strategy, a variety of vectors were constructed for the expression of proteins in E. coli, enabling large number of different clones to be rapidly generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.