Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.
SummaryCleistogamy is an efficient strategy for preventing gene flow from genetically modified (GM) crops. We identified a cleistogamous mutant of rice harbouring a missense mutation (the 45th residue isoleucine to threonine; I45T) in the class-B MADS-box gene SUPERWOMAN1 ( SPW1 ), which specifies the identities of lodicules (equivalent to petals) and stamens. In the mutant, spw1-cls , the stamens are normal, but the lodicules are transformed homeotically to lodicule-glume mosaic organs, thereby engendering cleistogamy. Since this mutation does not affect other agronomic traits, it can be used in crosses to produce transgenic lines that do not cause environmental perturbation. Molecular analysis revealed that the reduced heterodimerization ability of SPW1I45T with its counterpart class-B proteins OsMADS2 and OsMADS4 caused altered lodicule identity. spw1-cls is the first useful mutant for practical gene containment in GM rice. Cleistogamy is possible in many cereals by engineering class-B floral homeotic genes and thereby inducing lodicule identity changes.
Two homologs of PISTILLATA have been identified in rice: OsMADS2 and OsMADS4. However, their roles in floral organ development are controversial. Here, we demonstrate that the genes show unequal redundancy of class B function. Although OsMADS2 plays an important role in lodicule development, OsMADS4 also supports the specification of lodicule identity. In contrast, the genes are roughly equally important in stamen development. Consistent with their redundant functions, both OsMADS2 and OsMADS4 interact with the unique rice AP3 ortholog SPW1.
Pollen-mediated transgene flow is a major concern for the production of genetically modified (GM) rice. Cleistogamy is a useful tool for preventing this form of gene flow. We previously identified the cleistogamous rice mutant
superwoman1-cleistogamy
(
spw1-cls
) and determined its molecular genetic mechanism. In the present study, we cultivated
spw1-cls
over five years to examine effects of cleistogamy on agronomic traits. Simultaneously, we cultivated cleistogamous backcross lines created by continuous backcrossing with “Yumeaoba” (a
japonica
cultivar) as the recurrent parent and by application of a DNA marker. In these experimental cultivations,
spw1-cls
and its backcross lines showed almost equal or slightly lower, but acceptable, agronomic traits compared with each control line. We also conducted natural crossing tests in paddy fields to assess the gene containment capability of
spw1-cls
. In a series of field experiments, there was no natural crossing between
spw1-cls
(pollen donor) and pollen recipient lines, but the wild-type donor and recipient lines were crossed. Thus, the cleistogamy of the
spw1-cls
mutation is able to inhibit natural crossing effectively, without significant loss of commercial benefits, such as yield. We conclude that
spw1-cls
cleistogamy is a practical tool for gene containment in GM rice cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.