The purpose of present study was to evaluate active mobilization effect of mesenchymal stem cells (MSCs) into injured tissues after intraarticular injection of MSCs, and to evaluate their contribution to tissue regeneration. MSCs, which were obtained from green fluorescent protein (GFP) transgenic Sprague-Dawley (SD) rat and cultivated, were injected into normal SD rats in which multiple tissues had been injured including anterior cruciate ligament (ACL), medial meniscus, and articular cartilage of the femoral condyles. At 4 weeks after injection of MSCs, fluorescent microscopic observation, immunohistochemical or histological examinations were performed to evaluate mobilization of MSCs into injured tissue and their contribution to tissue regeneration. In the group of 1 x 10(6) MSCs injection, GFP positive cells could mobilize into the injured ACL alone in all 8 knees. In the group of 1 x 10(7) MSCs injection, GFP positive cells were observed in the injured site of ACL in all 8 knees and in the injured site of medial meniscus and cartilage of femoral condyles in 6 of 8 knees. More interestingly, extracellular matrix stained by toluidine blue was present around GFP positive cells in the injured femoral condyles cartilage and medial meniscus, indicating tissue regeneration. Intraarticularly injected MSCs could mobilize into the injured tissues, and probably contributed to tissue regeneration. This study demonstrated the possibility of intraarticular injection of MSCs for the treatment of intraarticular tissue injuries including ACL, meniscus, or cartilage. If this treatment option is established, it can be minimally invasive compared to conventional surgeries for these tissues.
Articular cartilage has very limited potential to spontaneously heal, because it lacks vessels and is isolated from systemic regulation. Although there have been many attempts to treat articular cartilage defects, such as drilling, microfracture techniques, soft tissue grafts or osteochondral grafts, no treatment has managed to repair the defects with long-lasting hyaline cartilage. Recently, a regenerative medicine using a tissue engineering technique for cartilage repair has been given much attention in the orthopedic field. In 1994, Brittberg et al. introduced a new cell technology in which chondrocytes expanded in monolayer culture were transplanted into the cartilage defect of the knee. As a second generation of chondrocyte transplantation, since 1996 we have been performing transplantation of tissue-engineered cartilage made ex vivo for the treatment of osteochondral defects of the joints. This signifies a concept shift from cell transplantation to tissue transplantation made ex vivo using tissue engineering techniques. We have reported good clinical results with this surgical treatment. However, extensive basic research is vital to achieve better clinical results with this tissue engineering technique. This article describes our recent research using a minimally invasive tissue engineering technique to promote cartilage regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.