An angle-resolved linearly polarized hard X-ray photoemission spectroscopy (HAXPES) system has been developed to study the ground-state symmetry of strongly correlated materials. The linear polarization of the incoming X-ray beam is switched by a transmission-type phase retarder composed of two diamond (100) crystals. The best value of the degree of linear polarization was found to be À0.96, containing a vertical polarization component of 98%. A newly developed low-temperature two-axis manipulator enables easy polar and azimuthal rotations to select the detection direction of photoelectrons. The lowest temperature achieved was 9 K, offering the chance to access the ground state even for strongly correlated electron systems in cubic symmetry. A co-axial sample monitoring system with long-working-distance microscope enables the same region on the sample surface to be measured before and after rotation. Combining this sample monitoring system with a micro-focused X-ray beam by means of an ellipsoidal Kirkpatrick-Baez mirror (25 mm  25 mm FWHM), polarized valence-band HAXPES has been performed on NiO for voltage application as resistive random access memory to demonstrate the micropositioning technique and polarization switching.
Ferromagnetic conductive filaments (CFs) were formed in a conductive-bridge random access memory (CBRAM) with a Ni electrode using high current compliances during a set process. We investigated CFs in a Ni/HfO2/Pt CBRAM using the current compliance dependences of the set process, low-temperature characteristics, and anisotropic magnetoresistance (AMR). Set processes occurred when a positive bias was applied to the Ni electrode only; therefore, the switching phenomena showed polarity. The resistance of the ON state (low resistance state) was dependent on the current compliance between 2 and 5 mA. The ON state of the device showed a metallic conduction property, suggested by the temperature dependence of resistance. When a high current compliance (5 mA) was used for programming, the ON state showed AMR, which was direct evidence of ferromagnetic CF formation. This suggests that the formation of a ferromagnetic CF is associated with the accumulation of Ni ions that diffused from the Ni electrode. The OFF-state (high resistance state) resistance slightly increased with decreasing temperature and AMR was not observed.
The switching process of the conductive filament formed in Ni/HfO x /Pt resistive random access memory (ReRAM) devices were studied. We evaluated the oxide thickness dependence and temperature dependence of voltage for the Forming, Set and Reset operations for HfO x layers whose thickness are between 3.3 and 6.5 nm. The resistance of conductive filaments showed typical metallic behavior, which suggests Ni filament formation in the HfO x layer. There is a clear dependence of switching voltages for the Set and Reset processes on oxide thickness, which implies that the formation and rupture of conductive filaments occur in the entire thickness range of the HfO x layer. This finding differs from that of a previous study by Yang, which suggests the existence of a constant-thickness switching region. It is suggested that the thickness of the switching region in HfO x may be larger than 6.5 nm.
An attempt to reduce the SET voltage and RESET current of resistive switching (RS) memory was made using a geometric array of nanopeak (NP) structures. Bottoms of anodic porous alumina were used to form the NP structures that act as guides for the formation of conductive filaments that effectively concentrate the electric field. Samples were fabricated with flat surfaces (FS) and with two types of NP structure with different NP pitch. The NP samples provided SET voltages less than 2 V with narrow distributions and the RESET current was lower than that with the FS sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.