Considering the limited clinical benefits of individual approaches against malignancy, natural killer (NK) cell‐mediated immunotherapy is increasingly utilized in combination with radiotherapy and target therapeutics. However, the interplay of targeted agents, immunotherapy, and radiotherapy is complex. An improved understanding of the effect of chemotherapy or radiotherapy on specific molecular pathways in immune cells would help to optimize the synergistic antitumor efficiency. In this study, the selenium‐containing nanoparticles (NPs) could deliver the chemotherapeutic drug doxorubicin (DOX) to tumor sites by systemic administration. Radiation stimuli facilitate DOX release and enhance chemotherapy efficiency. Moreover, radiation could oxidize diselenide‐containing NPs to seleninic acid, which have both synergistic antitumor effect and immunomodulatory activity through enhancing NK cells function. These results indicate that the selenium‐containing NPs would be a potential approach to achieve simultaneous treatments of immunotherapy, chemotherapy, and radiotherapy by a simple but effective method.
Immunotherapy has emerged as a promising new approach for cancer treatment. However, clinically available drugs have been limited until recently, and the antitumor efficacy of most cancer immunotherapies still needs to be improved. Herein, we develop diselenide–pemetrexed assemblies that combine natural killer (NK) cell‐based cancer immunotherapy with radiotherapy and chemotherapy in a single system. The assemblies are prepared by co‐assembly between pemetrexed and cytosine‐containing diselenide through hydrogen bonds. Under γ‐radiation, the hydrogen bonds are cleaved, resulting in the release of pemetrexed. At the same time, diselenide can be oxidized to seleninic acid, which suppresses the expression of human leukocyte antigen E (HLA‐E) in cancer cells, thus activating the immune response of NK cells. In this way, cancer immunotherapy is combined with radiotherapy and chemotherapy, providing a new strategy for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.