The Sputnik V is a COVID- 19 vaccine developed by the Gamalia institute of epidemiology and microbiology and released on August 11, 2020. We provided independent evidence on side effects and immunogenicity following the administration of the Sputnik V COVID-19 in Iran. In this observational study, the healthcare workers who were vaccinated with the Sputnik V COVID-19 vaccine within February and April 2021 were evaluated. Among a total of 13,435 vaccinated healthcare workers, we received 3236 self-declaration reports of Sputnik V associated adverse events with the mean age 39.32 ± 10.19 years old which 38.8% were men and 61.2% were women. Totally 68.8% of females versus 66.2% of males reported side effects after receiving the first dose and 31.2% of females versus 33.8% of males reported side effects after the second dose of vaccine. The most common side effect was a pain in the injection site (56.9%), fatigue (50.9%), body pain (43.9%), headache (35.7%), fever (32.9%), joint pain (30.3%), chilling (29.8%) and drowsiness (20.3%). Side effects of the vaccine were significantly more frequent in females and younger individuals. Among a total of 238 participants, more than 90% after the first and second dose of vaccine had a detectable level of SARS-CoV-2 RBD antibody and SARS-CoV-2 neutralizing antibody. Although the overall rate of adverse effects was higher than the interim results from randomized controlled trials, our findings support the manufacturer’s reports about the high humoral immunogenicity of vaccine against COVID-19.
The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70‐1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane‐associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Background: Nowadays, the encapsulation of cytotoxic chemotherapeutic agents is attracting interest as a method for drug delivery. We hypothesized that the efficiency of helenalin might be maximized by encapsulation in β-cyclodextrin nanoparticles. Helenalin, with a hydrophobic structure obtained from flowers of Arnica chamissonis and Arnica Montana, has anti-cancer and anti-inflammatory activity but low water solubility and bioavailability. β-Cyclodextrin (β-CD) is a cyclic oligosaccharide comprising seven D-glucopyranoside units, linked through 1,4-glycosidic bonds. Materials and Methods: To test our hypothesis, we prepared β-cyclodextrinhelenalin complexes to determine their inhibitory effects on telomerase gene expression by real-time polymerase chain reaction (q-PCR) and cytotoxic effects by colorimetric cell viability (MTT) assay. Results: MTT assay showed that not only β-cyclodextrin has no cytotoxic effect on its own but also it demonstrated that β-cyclodextrinhelenalin complexes inhibited the growth of the T47D breast cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of β-cyclodextrin-helenalin complexes increased. Conclusions: β-Cyclodextrin-helenalin complexes exerted cytotoxic effects on T47D cells through down-regulation of telomerase expression and by enhancing Helenalin uptake by cells. Therefore, β-cyclodextrin could be superior carrier for this kind of hydrophobic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.