Accurate positioning of the shearer remains a challenge for automation of the longwall coal mining process. In this paper, the popular Ultra-wideband (UWB) positioning system that has attracted considerable attention is adopted to obtain the target node location. Unfortunately, localization accuracy is still unsatisfactory and unreliable in mixed line of sight (LOS) and non-line of sight (NLOS) scenarios. To ameliorate localization accuracy of UWB for complicate underground environment where the positioning scenarios suffered from frequently switching among LOS, NLOS, and mixed LOS-NLOS condition, the novel positioning algorithm GMM-IMM-EKF was proposed. Gaussian mixed model (GMM) was employed to re-estimate the measurement distance, and two parallel variational Bayesian adaptive Kalman filters (VBAKFs) under the structure of interacting multiple model (IMM) was utilized to smoothen the result of GMM to eliminate the LOS and NLOS errors, respectively. Then, the position of the target node was determined by exploiting extended Kalman filter (EKF) based on the outcome of IMM-VBAKF. The proposed approach was assessed by exploiting UWB P440 modules. Comparative experimental verification demonstrated that GMM-IMM-EKF strategy outperformed other positioning approaches, which can effectively reduce the adverse effect of NLOS errors and achieve higher positioning accuracy in underground environment with LOS/NLOS/LOS-NLOS transition conditions. INDEX TERMS Ultra-wideband, variational Bayesian adaptive Kalman filter, Gaussian mixed model, interacting multiple model, underground environment.
The squat exercise was usually performed with varying feet and hip angles by different populations. The objective of this study was to compare and contrast the three-dimensional knee angles, moments, and forces during dynamic squat exercises with varying feet and hip angles. Lower extremity motions and ground reaction forces for fifteen healthy subjects (9 females and 6 males) were recorded while performing the squat with feet pointing straight ahead (neutral squat), 30º feet adduction (squeeze squat) and 30º feet abduction (outward squat). Nonparametric procedures were used to detect differences in the interested measures between the conditions. No significant difference in three-dimensional peak knee angles was observed for three squat exercises (p>0.05), however, the overall tendency of knee rotations was affected by varying feet and hip positions. During the whole cycle, the outward squat mainly displayed adduction moments, while the neutral and squeeze squat demonstrated abduction moments. Peak abduction moments were significantly affected by feet positions (p<0.05). Moreover, the tibiofemoral and patellofemoral joint forces progressively increased as knee flexed and decreased as knee extended, yet peak forces were not affected by varying feet positions (p>0.05). In conclusion, a neutral position is recommended to perform the squat exercise, while the squeeze squat and outward squat might contribute to the occurrence of joint pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.