Here, an analytical modelling of drain current is presented for double gate-all-around (DGAA) MOSFETs. A common feature in all the multi-gate (MG) MOSFETs is that the channel charge in the sub-threshold regime is proportional to the channel cross-sectional area; whereas, the inversion charges above threshold locate near the Si/SiO 2 interfaces and are proportional to the total gated perimeter of the channel body. This distinctive feature introduces the notion of equivalent charge and has been widely used to model the drain current of any arbitrary non-classical MOSFET architecture. The authors have extended the aforementioned quasi-approach to model the drain current of DGAA MOSFET. The total gated perimeter of DGAA MOSFET is mapped by the gated perimeter of two GAA MOSFETs with different radii for the calculation of surface inversion charges above threshold. The currents obtained from two GAA MOSFETs are summed up to obtain the current of DGAA MOSFET. I-V characteristics and transconductance of the device for various physical parameters are compared and analysed with the numerical simulation results obtained from Visual-TCAD of Cogenda Int.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.