We present two techniques that are shown to yield improved Keyword Spotting (KWS) performance when using the ATWV/MTWV performance measures: (i) score normalization, where the scores of different keywords become commensurate with each other and they more closely correspond to the probability of being correct than raw posteriors; and (ii) system combination, where the detections of multiple systems are merged together, and their scores are interpolated with weights which are optimized using MTWV as the maximization criterion. Both score normalization and system combination approaches show that significant gains in ATWV/MTWV can be obtained, sometimes on the order of 8-10 points (absolute), in five different languages. A variant of these methods resulted in the highest performance for the official surprise language evaluation for the IARPA-funded Babel project in April 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.