Proximity biotinylation based on Escherichia coli BirA enzymes such as BioID (BirA*) and TurboID is a key technology for identifying proteins that interact with a target protein in a cell or organism. However, there have been some improvements in the enzymes that are used for that purpose. Here, we demonstrate a novel BirA enzyme, AirID (ancestral BirA for proximity-dependent biotin identification), which was designed de novo using an ancestral enzyme reconstruction algorithm and metagenome data. AirID-fusion proteins such as AirID-p53 or AirID-IκBα indicated biotinylation of MDM2 or RelA, respectively, in vitro and in cells, respectively. AirID-CRBN showed the pomalidomide-dependent biotinylation of IKZF1 and SALL4 in vitro. AirID-CRBN biotinylated the endogenous CUL4 and RBX1 in the CRL4CRBN complex based on the streptavidin pull-down assay. LC-MS/MS analysis of cells that were stably expressing AirID-IκBα showed top-level biotinylation of RelA proteins. These results indicate that AirID is a novel enzyme for analyzing protein–protein interactions.
Enantiomerically pure amino acid derivatives could be foundational compounds for peptide drugs. Deracemization of racemates to l-amino acid derivatives can be achieved through the reaction of evolved d-amino acid oxidase and chemical reductants, whereas deracemization to d-amino acid derivatives has not progressed due to the difficulty associated with the heterologous expression of l-amino acid oxidase (LAAO). In this study, we succeeded in developing an ancestral LAAO (AncLAAO) bearing broad substrate selectivity (13 l-amino acids) and high productivity through an Escherichia coli expression system (∼50.7 mg/L). AncLAAO can be applied to perform deracemization to d-amino acids in a similar way to deracemization to l-amino acids. In fact, full conversion (>99% ee, d-form) could be achieved for 16 racemates, including nine d,l-Phe derivatives, six d,l-Trp derivatives, and a d,l-phenylglycine. Taken together, we believe that AncLAAO could be a key enzyme to obtain optically pure d-amino acid derivatives in the future.
Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG’s biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.
We have determined the x-ray crystal structure of L-lysine ε-oxidase from Marinomonas mediterranea in its native and L-lysine-complex forms at 1.94- and 1.99-Å resolution, respectively. In the native enzyme, electron densities clearly indicate the presence of cysteine tryptophylquinone (CTQ) previously identified in quinohemoprotein amine dehydrogenase. In the L-lysine-complex, an electron density corresponding to the bound L-lysine shows that its ε-amino group is attached to the C6 carbonyl group of CTQ, suggesting the formation of a Schiff-base intermediate. Collectively, the present crystal structure provides the first example of an enzyme employing a tryptophylquinone cofactor in an amine oxidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.