As the most voluminous organ of the body that is exposed to the outer environment, the skin suffers from both intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, laxity, and rough-textured appearance. This aging process is accompanied with phenotypic changes in cutaneous cells as well as structural and functional changes in extracellular matrix components such as collagens and elastin. In this review, we summarize these changes in skin aging, research advances of the molecular mechanisms leading to these changes, and the treatment strategies aimed at preventing or reversing skin aging.
Hair follicle stem cells (HFSCs) are potentially useful for the treatment of skin injuries and diseases. To achieve clinical application, a prerequisite must be accomplished: harvesting enough HFSCs from limited skin biopsy. The commonly used sorting approach for isolating HFSCs, however, suffers from its intrinsic disadvantages, such as requirement of large-scale skin biopsy. Here, we report an efficient organ culture method to isolate and expand rat HFSCs from limited skin biopsy and these HFSCs could reconstitute the epidermis and the hair follicles (HFs). Seventy-three percent of cultured HFs formed hair follicle stem cell colonies from the bulge, and a single hair follicle provided all the HFSCs used in this research, demonstrating the high efficiency of this method. Quantitative RT-PCR and immunofluorescent staining results revealed that these stem cells obtained from the bulge highly expressed basal layer markers K14 and alpha-6 integrin, epithelial stem cell marker P63, and bulge stem cell marker K15. After long-term culture in vitro, GFP-labeled hair follicle stem cells formed new hair follicles, epidermis, and sebaceous glands following xenotransplantation into the back of nude mice. This study indicated that multipotent hair follicle stem cells could be efficiently harvested through organ culture from limited skin material-even a single hair follicle-and reconstitute hair follicles in vivo after long-term expansion culture, providing the basis for future clinical applications.
G protein-coupled receptors (GPCRs) mediate multiple key biological processes in the body. The orphan receptor GPR39 has been reported to be involved in various pathophysiological events. However, the function of GPR39 in skin biology remains unknown. Using a genetically engineered mouse strain in which lacZ expression faithfully replaced endogenous Gpr39 expression, we discovered a unique expression pattern of Gpr39 in the sebaceous gland (SG). Using various methods, we confirmed that GPR39 marked a specific cell population at the opening of the SG and colocalised with the SG stem cell marker Blimp1. Further investigations showed that GPR39 was spatiotemporally expressed during skin wound repair. Although it was dispensable for skin development and homeostasis, GPR39 contributed positively to skin wound healing: its loss led to a delay in wound healing during the intermediate stage. The present study reveals a novel role of GPR39 in both dermatology and stem cell biology that has not been previously recognised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.