Climbing is one of the most important components of primate locomotor modes. We previously reported that the kinesiological characteristics of vertical climbing by the spider monkey and Japanese macaque are clearly different, based on their kinetics and kinematics. In this study, a more detailed analysis using inverse dynamics was conducted to estimate the biomechanical characteristics of vertical climbing in the spider monkey and Japanese macaque. One of the main findings was the difference in forelimb use by the two species. The results of a joint moment analysis and estimates of muscular force indicate that the spider monkey uses its forelimbs to keep the body close to the substrate, rather than to generate propulsion. The forelimb of the Japanese macaque, on the other hand, likely contributes more to propulsion. This supports the idea that "forelimb-hindlimb differentiation" is promoted in the spider monkey. The estimated muscular force also suggests that the spider monkey type of climbing could develop the hindlimb extensor muscles, which are important in bipedal posture and walking. As a result, we conclude that the spider monkey type of climbing could be functionally preadaptive for human bipedalism. This type of climbing would develop the hip and knee extensor muscles, and result in more extended lower limb joints, a more erect trunk posture, and more functionally differentiated fore- and hindlimbs, all of which are important characteristics of human bipedalism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.