Movement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim unites methods from these fields to create fast and accurate simulations of movement, enabling two fundamental tasks. First, the software can calculate variables that are difficult to measure experimentally, such as the forces generated by muscles and the stretch and recoil of tendons during movement. Second, OpenSim can predict novel movements from models of motor control, such as kinematic adaptations of human gait during loaded or inclined walking. Changes in musculoskeletal dynamics following surgery or due to human–device interaction can also be simulated; these simulations have played a vital role in several applications, including the design of implantable mechanical devices to improve human grasping in individuals with paralysis. OpenSim is an extensible and user-friendly software package built on decades of knowledge about computational modeling and simulation of biomechanical systems. OpenSim’s design enables computational scientists to create new state-of-the-art software tools and empowers others to use these tools in research and clinical applications. OpenSim supports a large and growing community of biomechanics and rehabilitation researchers, facilitating exchange of models and simulations for reproducing and extending discoveries. Examples, tutorials, documentation, and an active user forum support this community. The OpenSim software is covered by the Apache License 2.0, which permits its use for any purpose including both nonprofit and commercial applications. The source code is freely and anonymously accessible on GitHub, where the community is welcomed to make contributions. Platform-specific installers of OpenSim include a GUI and are available on simtk.org.
In this paper, we tackle the problem of online road network extraction from sparse 3D point clouds. Our method is inspired by how an annotator builds a lane graph, by first identifying how many lanes there are and then drawing each one in turn. We develop a hierarchical recurrent network that attends to initial regions of a lane boundary and traces them out completely by outputting a structured polyline. We also propose a novel differentiable loss function that measures the deviation of the edges of the ground truth polylines and their predictions. This is more suitable than distances on vertices, as there exists many ways to draw equivalent polylines. We demonstrate the effectiveness of our method on a 90 km stretch of highway, and show that we can recover the right topology 92% of the time.
The language used in tweets from 1,300 different US counties was found to be predictive of the subjective well-being of people living in those counties as measured by representative surveys. Topics, sets of co-occurring words derived from the tweets using LDA, improved accuracy in predicting life satisfaction over and above standard demographic and socio-economic controls (age, gender, ethnicity, income, and education). The LDA topics provide a greater behavioural and conceptual resolution into life satisfaction than the broad socio-economic and demographic variables. For example, tied in with the psychological literature, words relating to outdoor activities, spiritual meaning, exercise, and good jobs correlate with increased life satisfaction, while words signifying disengagement like ’bored’ and ’tired’ show a negative association.
Reliable and accurate lane detection has been a long-standing problem in the field of autonomous driving. In recent years, many approaches have been developed that use images (or videos) as input and reason in image space. In this paper we argue that accurate image estimates do not translate to precise 3D lane boundaries, which are the input required by modern motion planning algorithms. To address this issue, we propose a novel deep neural network that takes advantage of both LiDAR and camera sensors and produces very accurate estimates directly in 3D space. We demonstrate the performance of our approach on both highways and in cities, and show very accurate estimates in complex scenarios such as heavy traffic (which produces occlusion), fork, merges and intersections.
We use results from a multiyear, geopolitical forecasting tournament to highlight the ability of the contribution weighted model [Budescu DV, Chen E (2015) Identifying expertise to extract the wisdom of crowds. Management Sci. 61(2):267–280] to capture and exploit expertise. We show that the model performs better when judges gain expertise from manipulations such as training in probabilistic reasoning and collaborative interaction from serving on teams. We document the model’s robustness using probability judgments from early, middle, and late phases of the forecasting period and by showing its strong performance in the presence of hypothetical malevolent forecasters. The model is highly cost-effective: it operates well, even with random attrition, as the number of judges shrinks and information on their past performance is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.