Islets organoids would have value in the cell replacement therapy for diabetes apart from usual personalized drug screening routes. Generation of a large number of Islets like clusters, with ability to respond to glucose stimulation appears to be an ideal choice. In this study we have generated islet organoids with the ability to respond to glucose stimulation by insulin release. The source of the cells was an iPSC cell line differentiated into the pancreatic progenitors. These cells were assembled in matrigel or cross-linked collagen scaffold and compared for their efficacy to release insulin upon stimulation with glucose. The assembled organoids were examined by immunohistochemistry and expression of the relevant marker genes. The organoids showed expression of islet like markers in both - matrigel and crosslinked collagen scaffold. The islet organoids in both the cases showed release of insulin upon stimulation with glucose. The crosslinked collagen scaffold is quite stable and supports islet cells growth and function.
Degenerative diseases associated with articular cartilage pose a huge burden on health care economics. The nature of the tissue involved and the changes therein do not allow self-healing; and most of these problems are progressive. Tissue engineering offers some solutions provided we focus on the right kind of cells and the appropriate surrounding niches created for a particular tissue. The present study deals with the formation of polysaccharide rich stable scaffold of collagen after cross-linking with oxidized gum arabic. The scaffold was tested for its biocompatibility and ability to support cells. The in vitro cytotoxicity of the scaffolds toward induced pluripotent stem cells and chondrocytes was evaluated. Evaluation of expression of lineage specific markers indicates differentiation of induced pluripotent stem cells to chondrogenic lineage and maintenance of chondrocytes per se when grown in the scaffold. Animal studies were carried out to study the efficacy of the scaffold to repair the knee injuries. Cells along with the scaffold appeared to be the best filling, in repair of injured cartilage. These studies show that these scaffolds are potential candidates in applications such as tissue engineering of cartilage.
The nature of flagellin–Toll-like receptor 5 (TLR5) interactions, depending on binding to and activation of TLR5, may hold a key to the distinct differences in gut microbiome and intestinal immune function in different populations around the world (see related Research Article by Clasen
et al
.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.