Ketamine is a commonly used pediatric anesthetic, but it might affect development, or even induce neurotoxicity in the neonatal brain. We have used an in vivo neonatal mouse model to induce ketamine-related neurotoxicity in the hippocampus, and found that miR-34c, a microRNA associated with pathogenesis of Alzheimer's disease, was significantly upregulated during ketamine-induced hippocampal neurodegeneration. Functional assay of silencing miR-34c demonstrated that downregulation of miR-34c activated PKC-ERK pathway, upregulated anti-apoptotic protein BCL2, and ameliorated ketamine-induced apoptosis in the hippocampus. Cognitive examination with the Morris water maze test showed that ketamine-induced memory impairment was significantly improved by miR-34c downregulation. Thus, miR-34c is important in regulating ketamine-induced neurotoxicity in hippocampus.
Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05–0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.