Formation of monodispersed Co nanoclusters on a single-crystal Si3N4 dielectric film at room temperature is reported. A remarkably narrow size distribution with the average size of approximately 30 Co atoms has been obtained. We have confirmed that the average size of Co nanoclusters is independent of the Co coverage and the cluster areal density linearly proportions to the Co deposition amount even at high coverages. Also, we have found that Co nanoclusters deposited on Si3N4 are thermally stable with respect to cluster aggregation/coalescence. We propose that this novel phenomenon is a quantum size effect, manifested by local energy minima in the electronic shell structure of Co quantum dots.
We achieved direct visualization of the piezoelectric potentials in a single bent ZnO microwire (MW) using focused synchrotron radiation (soft x-ray) scanning photoelectron spectro-microscopy. Using radial-line scan across the bent section of ZnO MW, the characteristic core-level shifts were directly related to the spatial distribution of piezoelectric potentials perpendicular to the ZnO polar direction. Using piezoelectric modeling in ZnO, we delineated the band structure distortion and carrier concentration change from tensile to compressed sides by combining the spatial resolved cathodoluminescence characteristics in an individual microwire. This spectro-microscopic technique allows imaging and identification of the electric-mechanical couplings in piezoelectric micro-/nano-wire systems.
In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.