Highly c-axis oriented ZnO thin films were deposited on n-Si (111) substrate at various oxygen partial pressures by pulsed laser deposition (PLD). X-ray diffraction (XRD), Atomic force microscopy (AFM) were used to analyze the influence of the oxygen partial pressure on the crystallization and morphology of the ZnO thin films. X-ray photoelectron spectroscopy (XPS) was used to analyze relationships between chemical shifts of XPS energy spectra and stoichiometric ratios of ZnO thin films, and quantitative relationships between content of Zn, O and oxygen partial pressures. An optimal crystallized and stoichiometric ZnO thin film was observed at the oxygen partial pressure of 6.5Pa.
The constitutive equations relating cross-sectional loads(forces and moments)to cross-sectional displacements(stretching, bending, twisting) of thin-walled laminated beams with integral shape memory alloy (SMA)active fibers was presented. The variational asymptotic method was used to formulate the force- deformation relationships equations, accounting for the presence of active SMA fibers distributed along the cross-section of the beam. The constitutive relationships for evaluation of the properties of a hybrid SMA composite ply were obtained following the rule of mixtures. The analytical expressions of the actuation components for the active beam were derived based on Tanaka’s constitutive equation and Lin’s linear phase transformation kinetics for SMA fiber. The general form of constitutive relation was applied to the case of stretching-twist coupling, corresponding to Circumferentially Uniform Stiffness (CUS). The present analysis extended the previous work done for modeling generic passive thin-walled laminated beams. Numerical results shown that significant stretching and twisting deflection occur during the phase transformation due to SMA actuation. The effects of temperature on structural response behavior during phase transformation from martensite to austenite are significant. The effects of the volume fraction of the SMA fiber, the martensitic residual strain and ply angle were also addressed
A temperature and humidity measurement system for grain storage is developed. In the system, digital temperature and humidity sensors and single chip UHF transceiver were used. The system consists of the host controller used to manage extension device in each granary and the data transmission, and extension devices fixed in each granary were used to periodically measure temperature and humidity and transmit temperature and humidity data following instructions from host controller. Besides the advantage of simple structure, being easy to maintain and good measuring stability, the system characterized by wireless transmission of temperature and humidity sample data, which make it suitable for spread around grain storage.
An on-line thermocouple auto-calibration system using wireless communication module for ceramic kilns has been developed. It is consist of the temperature measurement module for the ceramic kilns, Wireless transmitting and receiving module, data processing and results display module of the PC. For the requirement of thermocouple calibration for ceramic kilns, the wireless data transmission module is used to transmit temperature data in the system. Finally, the data is transmitted to PC through serial interface, it is processed and the calibration results are derived by PC. Its performance fully met calibration requirements. The calibration efficiency of the system is greatly enhanced and the additional man-made errors are reduced. The proposed system ran well in practice.
ZnO thin films were deposited on n-Si (111) substrates at various oxygen partial pressures by pulsed laser deposition (PLD). X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to analyze the influence of the oxygen partial pressure on the crystallization and morphology of the ZnO thin films. An optimal crystallized ZnO thin film was observed at the oxygen partial pressure of 6.5Pa. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface components and distribution status of various elments in ZnO thin films. It was found that ZnO thin films were grown in Zn-rich state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.