A cell-level radiation hardening by design (RHBD) method based on commercial processes of single event transient (SET) and single event upset (SEU) is proposed in this paper, in which new radiation-hardened D-type flip-flops (DFFs) are designed. An application-specific integrated circuit (ASIC) of a million gates level is developed based on DFFs, and SEU and single event functional interruption (SEFI) heavy-ion radiation tests are carried out. The experimental results show that the new DFF SEU ability is increased by 63 times compared with the DICE-designed DFF, and is three orders of magnitude higher than the redundantly designed DFF. The SEFI ability of the ASIC designed by the new DFF is 2.6 times higher than the circuit hardened by the TMR design.
As one of the key technologies of Honeywell, the aeronautical radio incorporated (ARINC) 659 bus is popular in current space-borne computers. However, Honeywell does not design ARINC 659 bus controller separately, and there are only a few papers about FPGA-based ARINC 659 bus controllers. Accordingly, to promote the extremely high performance needs of space-borne computers, this paper designs an ARINC 659 bus controller chip which integrates two independent bus interface units (BIUs), one 8-bit MCU, and several peripheral interfaces (i.e., UART, SPI, and I2C). Because the two BIUs are identical and mutually checked, the symmetry problem is emphatically dealt with in the design of this bus controller, and effective timing convergence is realized, which makes the bus controller work reliably and stably. In addition, due to the circuit’s large scale, design for testability (DFT) is also considered. Accordingly, on-chip clock (OCC) and scanning compression test technique are used to realize the at-speed test and shorten the test time, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.