Premise: Co-flowering species that have not evolved an avoidance mechanism may have tolerance to heterospecific pollen (HP) deposition as an adaptive strategy to minimize any deleterious effects of HP transfer, but empirical evidence for the tolerance hypothesis remains scarce. Methods: To estimate the potential effects of heterospecific pollen deposition (HPD) on female reproductive success, we counted conspecific (CP) and HP pollen grains deposited on stigmas and assessed subsequent seed set of both open-and handpollinated flowers in three co-flowering Silene species with exposed stigmas that usually received numerous HP grains on the elongated receptive area. Results: The percentage of HP grains per flower (HP%) varied from 16.6% to 43.0% among three species. Silene chungtienensis had lower HP%, and the CP-HP relationship was neutral; S. gracilicaulis and S. yunnanensis had a relatively higher HP% with a positive CP-HP relationship. The effects of CP and HP number on natural seed set were positive for all three species, but HP% had stronger negative effects in S. chungtienensis and S. gracilicaulis. In hand-pollinated flowers of the three Silene species, seed set did not decrease with HP whether CP was in excess or insufficient, indicating no negative effects of HPD on seed production. Conclusions: Consistent with the tolerance hypothesis, our results indicated that species with higher HP interference are likely to be tolerant to an increase in HP%. These species with generalist-pollinated flowers and exposed large stigmas may benefit from an increase of conspecific pollen deposition, despite the associated increase in heterospecific pollen deposition.
Floral color change in diverse plants has been thought to be a visual signal reflecting changes in floral rewards, promoting pollinator foraging efficiency as well as plant reproductive success. It remains unclear whether olfactory signals co-vary with floral color change. We investigated the production rhythms of floral scent and nectar associated with floral color change in Lonicera japonica. The flowers generally last 2-3 days. They are white on opening at night (N1) and become light yellow the following day (D1), yellow on the second night (N2), and golden on the second day of flowering (D2). Our measurements in the four stages indicated that nectar production decreased significantly from N1 and D1 to N2 and D2, tracking the floral color change. A total of 34 compounds were detected in floral scent and total scent emission was significantly higher in N2 than in the other three stages. The scent emission of three major compounds, Linalool, cis-3-Hexenyl tiglate, and Germacrene D was also significantly higher in N2, but the relative content of Linalool decreased gradually, cis-3-Hexenyl tiglate increased gradually, and the relative content of Germacrene D did not differ among the four measured stages. Greater scent emission by night than by day suggested a strong olfactory signal to attract nocturnal hawkmoths, the effective pollinators. However, floral scent rhythms in the four stages did not match the color change and nectar secretion, suggesting that floral color (visual) and scent (olfactory) in this species may play different roles in attracting or filtering various visitors.
Animal-pollinated plants have to get pollen to a conspecific stigma while protecting it from getting eaten. Touch-sensitive stamens, which are found in hundreds of flowering plants, are thought to function in enhancing pollen export and reducing its loss, but experimental tests are scarce. Stamens of Berberis and Mahonia are inserted between paired nectar glands and when touched by an insect’s tongue rapidly snap forward so that their valvate anthers press pollen on the insect’s tongue or face. We immobilized the stamens in otherwise unmodified flowers and studied pollen transfer in the field and under enclosed conditions. On flowers with immobilized stamens, the most common bee visitor stayed up to 3.6× longer, yet removed 1.3× fewer pollen grains and deposited 2.1× fewer grains on stigmas per visit. Self-pollen from a single stamen hitting the stigma amounted to 6% of the grains received from single bee visits. Bees discarded pollen passively placed on their bodies, likely because of its berberine content; nectar has no berberine. Syrphid flies fed on both nectar and pollen, taking more when stamens were immobilized. Pollen-tracking experiments in two Berberis species showed that mobile-stamen-flowers donate pollen to many more recipients. These results demonstrate another mechanism by which plants simultaneously meter out their pollen and reduce pollen theft.
Premise: Why have pollen grains evolved to be exceptionally large in some species? Pollen-feeding hypothesis suggests that if the proportion of pollen amounts for feeding is reduced in a flower, the low allocation to pollen number would allow pollen grains to be larger. Methods: To examine whether species with large pollen grains experience low pollen consumption, the behavior of insects feeding on nectar and pollen was observed and pollen transfer efficiency was estimated for four visitor types in Geranium delavayi. To see whether bees actively collected pollen, the numbers of grains in pollen baskets and on the body were compared. Both nutritional value (total protein and lipid) and chemical defense (phenolic metabolites) in pollen against pollen feeders were measured.Results: Bumblebees and honeybees foraged for nectar, rarely groomed pollen into corbiculae, and had >5× higher pollen transfer efficiency than smaller solitary bees and flies, which were pollen eaters that removed more pollen but deposited less. Pollen grains were characterized by low protein and high lipid content with a low protein-lipid ratio, an unfavorable combination for bumblebees. Three secondary metabolites were significantly higher in pollen grains (7.77 mg/g) than in petals (1.08 mg/g) or in nectar (0.44 mg/g), suggesting stronger chemical defense in pollen. Conclusions: Our results indicated that large bees took nectar but little of the nutritionally poor and highly toxic pollen. These data support one prediction of the pollen-feeding hypothesis, that species with few and large pollen grains would also have low pollen-consumption rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.