Moyamoya disease (MMD) is a rare, progressively steno-occlusive cerebrovascular disorder of unknown etiology. Here, we revealed the gene expression profile of the intracranial arteries in MMD via the RNA-sequencing (RNA-seq). We identified 556 differentially expressed genes (DEGs) for MMD, including 449 and 107 significantly upregulated or downregulated genes. Compared with atherosclerosis-associated intracranial artery stenosis/occlusion (AS-ICASO) controls, upregulated genes were mainly involved in extracellular matrix (ECM) organization, whereas downregulated genes were primarily associated with mitochondrial function and oxidative phosphorylation in MMD. Moreover, we found that a separate sex analysis uncovers more DEGs (n = 1.022) compared to an combined sex analysis in MMD. We identified 133 and 439 sex-specific DEGs for men and women in MMD, respectively. About 95.6% of sex-specific DEGs were protein-coding genes and 3% of the genes belonged to long non-coding RNAs (lncRNA). Sex-specific DEGs were observed on all chromosomes, of which 95.49 and 96.59% were autosomal genes in men and women, respectively. These sex-specific DEGs, such as aquaporin-4 (AQP4), superoxide dismutase 3 (SOD3), and nuclear receptor subfamily 4 group A member 1 (NR4A1), may contribute to sex differences in MMD. This transcriptomic study highlighted that ECM and mitochondrial function are the central molecular mechanisms underlying MMD, and revealed sex differences in the gene expression in the intracranial arteries, thereby providing new insights into the pathogenesis of MMD.
Background Although multiple signaling cascades and molecules contributing to the pathophysiological process have been studied, the treatments for stroke against present targets have not acquired significant clinical progress. Although CARD3 (caspase activation and recruitment domain 3) protein is an important factor involved in regulating immunity, inflammation, lipid metabolism, and apoptosis, its role in cerebral stroke is currently unknown. Methods and Results Using a mouse model of ischemia‐reperfusion (I‐R) injury based on transient blockage of the middle cerebral artery, we have found that CARD3 expression is upregulated in a time‐dependent manner during I‐R injury. Further animal study revealed that, relative to control mice, CARD3‐knockout mice exhibited decreased inflammatory response and neuronal apoptosis, with reduced infarct volume and lower neuropathological scores. In contrast, neuron‐specific CARD3‐overexpressing transgenic (CARD3‐TG) mice exhibited increased I‐R induced injury compared with controls. Mechanistically, we also found that the activation of TAK1 (transforming growth factor‐β–activated kinase 1) was enhanced in CARD3‐TG mice. Furthermore, the increased inflammation and apoptosis seen in injured CARD3‐TG brains were reversed by intravenous administration of the TAK1 inhibitor 5Z‐7‐oxozeaenol. Conclusions These results indicate that CARD3 promotes I‐R injury via activation of TAK1, which not only reveals a novel regulatory axis of I‐R induced brain injury but also provides a new potential therapeutic approach for I‐R injury.
Moyamoya disease (MMD) is a chronic steno-occlusive cerebrovascular disease that often leads to hemorrhagic and ischemic strokes; however, its etiology remains elusive. Surgical revascularization by either direct or indirect bypass techniques to restore cerebral hypoperfusion is the treatment of choice to date. This review aims to provide an overview of the current advances in the pathophysiology of MMD, including the genetic, angiogenic, and inflammatory factors related to disease progression. These factors may cause MMD-related vascular stenosis and aberrant angiogenesis in complex manners. With a better understanding of the pathophysiology of MMD, nonsurgical approaches that target the pathogenesis of MMD may be able to halt or slow the progression of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.