We consider the problem of estimating the size of a collection of documents using only a standard query interface. Our main idea is to construct an unbiased and low-variance estimator that can closely approximate the size of any set of documents defined by certain conditions, including that each document in the set must match at least one query from a uniformly sampleable query pool of known size, fixed in advance.Using this basic estimator, we propose two approaches to estimating corpus size. The first approach requires a uniform random sample of documents from the corpus. The second approach avoids this notoriously difficult sample generation problem, and instead uses two fairly uncorrelated sets of terms as query pools; the accuracy of the second approach depends on the degree of correlation among the two sets of terms.Experiments on a large TREC collection and on three major search engines demonstrates the effectiveness of our algorithms.
We consider a privacy threat to a social network in which the goal of an attacker is to obtain knowledge of a significant fraction of the links in the network. We formalize the typical social network interface and the information about links that it provides to its users in terms of lookahead. We consider a particular threat where an attacker subverts user accounts to get information about local neighborhoods in the network and pieces them together in order to get a global picture. We analyze, both experimentally and theoretically, the number of user accounts an attacker would need to subvert for a successful attack, as a function of his strategy for choosing users whose accounts to subvert and a function of lookahead provided by the network. We conclude that such an attack is feasible in practice, and thus any social network that wishes to protect the link privacy of its users should take great care in choosing the lookahead of its interface, limiting it to 1 or 2, whenever possible.
We consider a privacy threat to a social network in which the goal of an attacker is to obtain knowledge of a significant fraction of the links in the network. We formalize the typical social network interface and the information about links that it provides to its users in terms of lookahead. We consider a particular threat where an attacker subverts user accounts to get information about local neighborhoods in the network and pieces them together in order to get a global picture. We analyze, both experimentally and theoretically, the number of user accounts an attacker would need to subvert for a successful attack, as a function of his strategy for choosing users whose accounts to subvert and a function of lookahead provided by the network. We conclude that such an attack is feasible in practice, and thus any social network that wishes to protect the link privacy of its users should take great care in choosing the lookahead of its interface, limiting it to 1 or 2, whenever possible.
In general terms, an uncertain relation encodes a set of possible certain relations. There are many ways to represent uncertainty, ranging from alternative values for attributes to rich constraint languages. Among the possible models for uncertain data, there is a tension between simple and intuitive models, which tend to be incomplete, and complete models, which tend to be nonintuitive and more complex than necessary for many applications. We present a space of models for representing uncertain data based on a variety of uncertainty constructs and tuple-existence constraints. We explore a number of properties and results for these models. We study completeness of the models, as well as closure under relational operations, and we give results relating closure and completeness. We then examine whether different models guarantee unique representations of uncertain data, and for those models that do not, we provide complexity results and algorithms for testing equivalence of representations. The next problem we consider is that of minimizing the size of representation of models, showing that minimizing the number of tuples also minimizes the size of constraints. We show that minimization is intractable in general and study the more restricted problem
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.