Calcium sensing receptor (CaSR) is localized in various organs and plays diverse physiological and pathological roles. Several scientific contributions have suggested the involvement of this cell surface receptor in cardiac and renal diseases. Sepsis is considered to be one of the major causes of ICU admissions. Cardiac dysfunction and acute kidney injury are major manifestations of sepsis and associated with reduced survival. Presently, the treatment approaches for management of sepsis induced cardiac depression and kidney injury are not satisfactory. Activation of CaSR has been demonstrated to induce cardiomyocyte damage upon lipopolysaccaharde (LPS) exposure by enhancing calcium ion levels, ROS (reactive oxygen species) production, promotion of inflammation and apoptosis. In addition, CaSR seems to be a critical regulator of intracellular calcium ion levels, which is directly implicated in induction of mitochondrial dysfunction and release of various pro‐apoptotic pathways during sepsis. Certain evidences have also documented the expression of CaSR on neutrophils and T lymphocytes, where it is involved in activation of neutrophils and induces apoptosis of immune cells. Moreover, the expression of CaSR has been confirmed in podocytes, mesangial cells, proximal tubular cells and its activation is responsible for podocyte effacement, mesangial cell proliferation and proximal tubular cell apoptosis. We have analyzed the existing evidences, and critically discussed the possible mechanisms underlying CaSR activation mediated cardiac and renal dysfunction in sepsis condition.
The present study investigated the cardioprotective effects of activated platelet-rich plasma (PRP) on high dose isoproterenol (ISO) induced cardiotoxicity. ISO was injected at a dose of 85 mg/kg/day, s.c. for 2 days. Cardiac function parameters including dp/dt max/min, left ventricular end diastolic pressure (LVEDP), relaxation constant (tau) and electrocardiogram (ECG) changes, anti-oxidant and membrane bound enzymes assays, pro-inflammatory cytokine levels, collagen content, immunohistochemical staining/gene expression of vascular endothelial growth factor (VEGF), cTnI (cardiac troponin I), NF-κB (nuclear factor kappa B), Smad-2/3, TGF-β (transforming growth factor), collagen-1/3 proteins were evaluated. PRP and platelet-poor plasma (PPP) were injected intramyocardially (200 μl in each ventricle region) 3 h after first dose of ISO under anesthesia. ISO injection induced cardiac dysfunction, hypertrophy, fibrosis, necrosis due to decline in anti-oxidant capacity, enhanced NF-κB and reduced cTnI immunostaining. However, the PRP injection attenuated these cardiac pathological changes by exerting anti-inflammatory properties and promoting cardiomyocyte repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.