Fine-scale spatial genetic structure is increasingly recognized as an important factor in the studies of tropical forest trees as it influences genetic diversity of local populations. The biologic mechanisms that generate fine-scale spatial genetic structure are not fully understood. We studied fine-scale spatial genetic structure in ten coexisting dipterocarp tree species in a Bornean rain forest using microsatellite markers. Six of the ten species showed statistically significant fine-scale spatial genetic structure. Fine-scale spatial genetic structure was stronger at smaller spatial scales ( 100 m) than at larger spatial scales (> 100 m) for each species. Multiple regression analysis suggested that seed dispersal distance was important at the smaller spatial scale. At the larger scale (> 100 m) and over the entire sample range (0-1000 m), pollinators and spatial distribution of adult trees were more important determinants of fine-scale spatial genetic structure. Fine-scale spatial genetic structure was stronger in species pollinated by less mobile small beetles than in species pollinated by the more mobile giant honeybee (Apis dorsata). It was also stronger in species where adult tree distributions were more clumped. The hypothesized mechanisms underlying the negative correlation between clump size and fine-scale spatial genetic structure were a large overlap among seed shadows and genetic drift within clumped species.
The lowland tropical forests of Southeast Asia are dominated by a single family of canopy and emergent trees, the Dipterocarpaceae. The seeds of dipterocarps are gravity or gyration dispersed. Short distance and limited seed dispersal via these mechanisms result in the aggregation of related individuals and strong fine-scale spatial genetic structure (FSGS). In logged and fragmented forests, where gene flow may be disrupted, tree species with strong FSGS are predicted to exhibit increased inbreeding,
Linalool is an important compound that contributes to the floral aroma in wines. This study showed the effect of light exposure on linalool accumulation in berries. The grape bunches were covered with films that block the full light spectrum (Shade) and the UV spectrum (UV-block), and a transparent film (Control). The linalool content was significantly higher in juice from Control-covered berries than in juice from Shade- and UV-block-covered berries, and the expression levels of the representative genes in linalool biosynthesis in Shade- and UV-block-covered berries were markedly lower than in Control-covered berries. These findings suggest that exposing berries to light is essential for linalool biosynthesis. To reflect sunlight onto grape clusters, reflective sheets were placed on the ground of a vineyard. The linalool content in berries exposed to sunlight reflected from the reflective sheets was higher than those in the control.
Relative reproductive costs at the shoot level were detected in Rhus trichocarpa, which has simultaneous leafing and flowering, but not in R. javanica, which has leafing followed by flowering. However, the costs for the whole-plant level were diminished in both species. The results suggest that the phenophase type may produce the different costs for R. javanica and R. trichocarpa through the development of a compensation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.