The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.
Gas-phase synthesized vanadium-benzene 1:2 (VBz(2)) sandwich clusters were size-selectively deposited onto bare gold and long-chain n-alkanethiolate [-S-(CH(2))(n-1)-CH(3); n = 16, 18, and 22] self-assembled monolayer (SAM)-coated gold substrates under ultrahigh vacuum (UHV) conditions. Investigation of the resulting deposited clusters was performed by infrared reflection absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). The IR frequencies of the soft-landed VBz(2) clusters show excellent agreement with the fundamentals reported in IR data of VBz(2) in an argon matrix. The analysis of IRAS spectra reveals that while there was no orientational preference of the VBz(2) clusters on a bare gold substrate, the VBz(2) clusters deposited onto the SAM substrates were highly oriented with the molecular axis 70-80 degrees tilted off the surface normal. In addition, analysis of TDS spectra revealed unusually large adsorption heats of the physisorbed VBz(2) clusters. The present results are explained by cluster penetration into the long-chain alkanethiolate SAM and for the first time demonstrate the matrix isolation of gas-phase organometallic clusters around room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.