Biomagnification of perfluoroalkyl substances (PFASs) are well studied in marine food webs, but related information in fresh water ecosystem and knowledge on fractionation of their isomers along the food web are limited. The distribution, bioaccumulation, magnification, and isomer fractionation of PFASs were investigated in a food web of Taihu Lake, China. Perfluorooctanesulfonate (PFOS) and perfluorocarboxylates (PFCAs) with longer carbon chain lengths, such as perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnA), were predominant in organisms, while perfluorohexanoate (PFHxA) and perfluorooctanoate (∑PFOA) contributed more in the water phase. The consistent profile signature of PFOA isomers in water phase with 3M electrochemical fluorination (ECF) products suggests that ECF production of PFOA still exists in China. Linear proportions of PFOA, PFOS and perfluorooctane sulfonamide (PFOSA) in the biota were in the range of 91.9-100%, 78.6-95.5%, and 72.2-95.5%, respectively, indicating preferential bioaccumulation of linear isomers in biota. Trophic magnification factors (TMFs) were estimated for PFDA (2.43), perfluorododecanoate (PFDoA) (2.68) and PFOS (3.46) when all biota were included, suggesting that PFOS and long-chained PFCAs are biomagnified in the fresh water food web. The TMF of PFOS isomers descended in the order: n-PFOS (3.86) > 3+5m-PFOS (3.35) > 4m-PFOS (3.32) > 1m-PFOS (2.92) > m2-PFOS (2.67) > iso-PFOS (2.59), which is roughly identical to their elution order on a FluoroSep-RP Octyl column, suggesting that hydrophobicity may be an important contributor for isomer discrimination in biota.
Biotransformation of PFOS-precursors (PreFOS) may contribute significantly to the level of perfluorooctanesulfonate (PFOS) in the environment. Perfluorooctane sulfonamide (PFOSA) is one of the major intermediates of higher molecular weight PreFOS. Its further degradation to PFOS could be isomer specific and thereby explain unexpected high percentages of branched (Br-) PFOS isomers observed in wildlife. In this study, isomeric degradation of PFOSA was concomitantly investigated by in vivo and in vitro tests using common carp as an animal model. In the in vivo tests branched isomers of PFOSA and PFOS were eliminated faster than the corresponding linear (n-) isomers, leading to enrichment of n-PFOSA in the fish. In contrast, Br-PFOS was enriched in the fish, suggesting that Br-PFOSA isomers were preferentially metabolized to Br-PFOS over n-PFOSA. This was confirmed by the in vitro test. The exception was 1m-PFOSA, which could be the most difficult to be metabolized due to its α-branched structure, resulting in the deficiency of 1m-PFOS in the fish. The in vitro tests indicated that the metabolism mainly took place in the fish liver instead of its kidney, and it was mainly a Phase I reaction. The results may help to explain the special PFOS isomer profile observed in wildlife.
Microcystin-RR (MC-RR) is one of the most common cyanotoxin microcystins in fresh water and is of great concern due to its potential hepatotoxicity. In the present study, Bi(2)WO(6) was synthesized with a hydrothermal method by varying the pH of the reaction solution in the range of 1-11. The surface area of the catalysts decreased, but the crystallinity and crystal size increased with the pH. The adsorption and degradation capacities of the catalysts decreased with increasing the preparation solution pH. The Bi(2)WO(6) prepared at pH 1 (Bi(2)WO(6)-pH1) displayed the highest adsorption and degradation capacity to MC-RR even though it consisted of randomly aggregated particles. Nearly 100% of MC-RR at 10 mg L(-1) was removed after 30 min of irradiation of near-ultraviolet light (300-400 nm) in a solution with Bi(2)WO(6) concentration of 0.2 g L(-1). The photodegradation efficiency of Bi(2)WO(6)-pH1 was greater in acid medium than in basic solutions. Several intermediate products were observed and identified by liquid chromatography/mass spectrometry/mass spectrometry, and a unique photodegradation pathway was proposed. It was assumed that a photo-Kolbe process happened at the site carboxyl acid group of the d-Glu residue by the photogenerated holes, producing a hydroperoxyl product at m/z 513.8. This intermediate could be further decomposed to an alcohol product at m/z 505.8 and a ketone product at m/z 504.8. The aromatic ring and diene bond of the Adda chain could also be attacked by the holes and form phenol and diol products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.