Ignition control is an important issue in homogeneous charge compression ignition (HCCI) engines, which have the advantages of low NOx emission and high thermal efficiency. In this study, the effect of the exhaust gas recirculation (EGR) on the ignition control of HCCI engines is discussed using an engine cycle simulation in which a homogeneous mixture is assumed. Auto-ignition of 65 per cent iso-octane + 25 per cent toluene + 10 per cent n-heptane, which is used as a fuel to evaluate the characteristics of a gasoline-like fuel, is represented by a detailed reaction model. The dilution by EGR delays the ignition timing when the charged gas temperature is not changed by EGR. The temperature rise of the charged gas promotes auto-ignition. Based on these characteristics, it was suggested that the ignition timing could be controlled by EGR with temperature control, when the amount of fuel supply is constant. This control method can also be applied to control of the air-fuel ratio (A/F) in the cylinder while maintaining the optimum ignition timing. In spite of the difference in the A/F and the EGR ratios, no significant difference was found in the pressure rise rate at combustion and the NOx emission when the ignition timing was the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.